Suppr超能文献

网络上的消费者健康搜索:网页可理解性及其在排名算法中的整合研究

Consumer Health Search on the Web: Study of Web Page Understandability and Its Integration in Ranking Algorithms.

作者信息

Palotti Joao, Zuccon Guido, Hanbury Allan

机构信息

Qatar Computing Research Institute, Doha, Qatar.

Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria.

出版信息

J Med Internet Res. 2019 Jan 30;21(1):e10986. doi: 10.2196/10986.

Abstract

BACKGROUND

Understandability plays a key role in ensuring that people accessing health information are capable of gaining insights that can assist them with their health concerns and choices. The access to unclear or misleading information has been shown to negatively impact the health decisions of the general public.

OBJECTIVE

The aim of this study was to investigate methods to estimate the understandability of health Web pages and use these to improve the retrieval of information for people seeking health advice on the Web.

METHODS

Our investigation considered methods to automatically estimate the understandability of health information in Web pages, and it provided a thorough evaluation of these methods using human assessments as well as an analysis of preprocessing factors affecting understandability estimations and associated pitfalls. Furthermore, lessons learned for estimating Web page understandability were applied to the construction of retrieval methods, with specific attention to retrieving information understandable by the general public.

RESULTS

We found that machine learning techniques were more suitable to estimate health Web page understandability than traditional readability formulae, which are often used as guidelines and benchmark by health information providers on the Web (larger difference found for Pearson correlation of .602 using gradient boosting regressor compared with .438 using Simple Measure of Gobbledygook Index with the Conference and Labs of the Evaluation Forum eHealth 2015 collection).

CONCLUSIONS

The findings reported in this paper are important for specialized search services tailored to support the general public in seeking health advice on the Web, as they document and empirically validate state-of-the-art techniques and settings for this domain application.

摘要

背景

可理解性在确保获取健康信息的人能够获得有助于解决其健康问题和做出选择的见解方面起着关键作用。已表明获取不清楚或有误导性的信息会对公众的健康决策产生负面影响。

目的

本研究的目的是调查估计健康网页可理解性的方法,并利用这些方法改进为在网上寻求健康建议的人检索信息的方式。

方法

我们的调查考虑了自动估计网页中健康信息可理解性的方法,并使用人工评估对这些方法进行了全面评估,同时分析了影响可理解性估计的预处理因素及相关陷阱。此外,将估计网页可理解性所吸取的经验教训应用于检索方法的构建,特别关注检索普通公众可理解的信息。

结果

我们发现,与传统的可读性公式相比,机器学习技术更适合估计健康网页的可理解性,传统可读性公式常被网络健康信息提供者用作指导方针和基准(使用梯度提升回归器时,Pearson相关系数为0.602,与使用“天书指数简易测量法”时的0.438相比,差异更大,数据来自2015年电子健康评估论坛会议和实验室的数据集)。

结论

本文报告的研究结果对于专门为支持公众在网上寻求健康建议而量身定制的搜索服务非常重要,因为它们记录并通过实证验证了该领域应用的最新技术和设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6dd/6372940/da196c8dce44/jmir_v21i1e10986_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验