Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
Ann Biomed Eng. 2019 Apr;47(4):913-923. doi: 10.1007/s10439-019-02216-1. Epub 2019 Jan 30.
The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from healthy subjects during walking and running at two speeds; one low speed close to the preferred walking speed and one high speed close to the preferred running speed. LyE_R and LyE_W were calculated using four different time series normalization procedures. The performance of the algorithms were evaluated based on their ability to return relative low values for slow walking and fast running and relative high values for fast walking and slow running. Neither of the two algorithms outperformed the other; however, the effectiveness of the two algorithms was highly dependent on the applied time series normalization procedure. Future studies using the LyE_R should normalize the time series to a fixed number of strides and a fixed number of data points per stride or data points per time series while the LyE_W should be applied to time series normalized to a fixed number of data points or a fixed number of strides.
本研究旨在探讨 Wolf 等人(LyE_W)和 Rosenstein 等人最大 Lyapunov 指数(LyE_R)算法在区分具有明显不同时间结构的数据集方面的有效性。在两种速度下(一种接近步行的低速,一种接近跑步的高速),从健康受试者在行走和跑步时记录骶骨的三维位移。使用四种不同的时间序列归一化程序计算 LyE_R 和 LyE_W。根据算法在返回慢走时相对低值和快跑时相对高值的能力来评估算法的性能。这两种算法都没有表现出优势;然而,这两种算法的有效性高度依赖于应用的时间序列归一化程序。未来使用 LyE_R 的研究应该将时间序列归一化为固定的步数和每步固定的数据点数量,或者每个时间序列的数据点数量,而 LyE_W 应该应用于归一化为固定数据点数量或固定步数的时间序列。