Prabhakar Sunil Kumar, Rajaguru Harikumar, Won Dong-Ok
Department of Artificial Intelligence Convergence, Chuncheon 24252, Republic of Korea.
Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam 638401, India.
Diagnostics (Basel). 2024 Aug 25;14(17):1857. doi: 10.3390/diagnostics14171857.
For patients suffering from obstructive sleep apnea and sleep-related breathing disorders, snoring is quite common, and it greatly interferes with the quality of life for them and for the people surrounding them. For diagnosing obstructive sleep apnea, snoring is used as a screening parameter, so the exact detection and classification of snoring sounds are quite important. Therefore, automated and very high precision snoring analysis and classification algorithms are required. In this work, initially the features are extracted from six different domains, such as time domain, frequency domain, Discrete Wavelet Transform (DWT) domain, sparse domain, eigen value domain, and cepstral domain. The extracted features are then selected using three efficient feature selection techniques, such as Golden Eagle Optimization (GEO), Salp Swarm Algorithm (SSA), and Refined SSA. The selected features are finally classified with the help of eight traditional machine learning classifiers and two proposed classifiers, such as the Firefly Algorithm-Weighted Extreme Learning Machine hybrid with Adaboost model (FA-WELM-Adaboost) and the Capuchin Search Algorithm-Weighted Extreme Learning Machine hybrid with Adaboost model (CSA-WELM-Adaboost). The analysis is performed on the MPSSC Interspeech dataset, and the best results are obtained when the DWT features with the refined SSA feature selection technique and FA-WELM-Adaboost hybrid classifier are utilized, reporting an Unweighted Average Recall (UAR) of 74.23%. The second-best results are obtained when DWT features are selected with the GEO feature selection technique and a CSA-WELM-Adaboost hybrid classifier is utilized, reporting an UAR of 73.86%.
对于患有阻塞性睡眠呼吸暂停和与睡眠相关的呼吸障碍的患者来说,打鼾非常普遍,这极大地干扰了他们以及周围人的生活质量。在诊断阻塞性睡眠呼吸暂停时,打鼾被用作一个筛查参数,因此打鼾声音的准确检测和分类非常重要。所以,需要自动化且高精度的打鼾分析和分类算法。在这项工作中,首先从六个不同的领域提取特征,如时域、频域、离散小波变换(DWT)域、稀疏域、特征值域和倒谱域。然后使用三种有效的特征选择技术,如金鹰优化(GEO)、樽海鞘群算法(SSA)和改进的SSA,来选择提取的特征。最后,借助八个传统机器学习分类器和两个提出 的分类器,如萤火虫算法 - 加权极限学习机与Adaboost模型的混合模型(FA - WELM - Adaboost)以及僧帽猴搜索算法 - 加权极限学习机与Adaboost模型的混合模型(CSA - WELM - Adaboost),对所选特征进行分类。分析是在MPSSC Interspeech数据集上进行的,当使用改进的SSA特征选择技术和FA - WELM - Adaboost混合分类器的DWT特征时,获得了最佳结果,未加权平均召回率(UAR)为74.23%。当使用GEO特征选择技术选择DWT特征并使用CSA - WELM - Adaboost混合分类器时,获得了第二好的结果,UAR为73.86%。