Suppr超能文献

2005-2013 年期间黑龙江省(中国)高度异质时空 HFRS 发病率分布的概率逻辑分析。

Probabilistic logic analysis of the highly heterogeneous spatiotemporal HFRS incidence distribution in Heilongjiang province (China) during 2005-2013.

机构信息

Ocean College, Zhejiang University, Zhoushan, China.

Department of Geography, San Diego State University, San Diego, California, United States of America.

出版信息

PLoS Negl Trop Dis. 2019 Jan 31;13(1):e0007091. doi: 10.1371/journal.pntd.0007091. eCollection 2019 Jan.

Abstract

BACKGROUND

Hemorrhagic fever with renal syndrome (HFRS) is a zoonosis caused by hantavirus (belongs to Hantaviridae family). A large amount of HFRS cases occur in China, especially in the Heilongjiang Province, raising great concerns regarding public health. The distribution of these cases across space-time often exhibits highly heterogeneous characteristics. Hence, it is widely recognized that the improved mapping of heterogeneous HFRS distributions and the quantitative assessment of the space-time disease transition patterns can advance considerably the detection, prevention and control of epidemic outbreaks.

METHODS

A synthesis of space-time mapping and probabilistic logic is proposed to study the distribution of monthly HFRS population-standardized incidences in Heilongjiang province during the period 2005-2013. We introduce a class-dependent Bayesian maximum entropy (cd-BME) mapping method dividing the original dataset into discrete incidence classes that overcome data heterogeneity and skewness effects and can produce space-time HFRS incidence estimates together with their estimation accuracy. A ten-fold cross validation analysis is conducted to evaluate the performance of the proposed cd-BME implementation compared to the standard class-independent BME implementation. Incidence maps generated by cd-BME are used to study the spatiotemporal HFRS spread patterns. Further, the spatiotemporal dependence of HFRS incidences are measured in terms of probability logic indicators that link class-dependent HFRS incidences at different space-time points. These indicators convey useful complementary information regarding intraclass and interclass relationships, such as the change in HFRS transition probabilities between different incidence classes with increasing geographical distance and time separation.

RESULTS

Each HFRS class exhibited a distinct space-time variation structure in terms of its varying covariance parameters (shape, sill and correlation ranges). Given the heterogeneous features of the HFRS dataset, the cd-BME implementation demonstrated an improved ability to capture these features compared to the standard implementation (e.g., mean absolute error: 0.19 vs. 0.43 cases/105 capita) demonstrating a point outbreak character at high incidence levels and a non-point spread character at low levels. Intraclass HFRS variations were found to be considerably different than interclass HFRS variations. Certain incidence classes occurred frequently near one class but were rarely found adjacent to other classes. Different classes may share common boundaries or they may be surrounded completely by another class. The HFRS class 0-68.5% was the most dominant in the Heilongjiang province (covering more than 2/3 of the total area). The probabilities that certain incidence classes occur next to other classes were used to estimate the transitions between HFRS classes. Moreover, such probabilities described the dependency pattern of the space-time arrangement of HFRS patches occupied by the incidence classes. The HFRS transition probabilities also suggested the presence of both positive and negative relations among the main classes. The HFRS indicator plots offer complementary visualizations of the varying probabilities of transition between incidence classes, and so they describe the dependency pattern of the space-time arrangement of the HFRS patches occupied by the different classes.

CONCLUSIONS

The cd-BME method combined with probabilistic logic indicators offer an accurate and informative quantitative representation of the heterogeneous HFRS incidences in the space-time domain, and the results thus obtained can be interpreted readily. The same methodological combination could also be used in the spatiotemporal modeling and prediction of other epidemics under similar circumstances.

摘要

背景

肾综合征出血热(HFRS)是一种由汉坦病毒(属于汉坦病毒科)引起的人畜共患疾病。中国有大量 HFRS 病例,尤其是在黑龙江省,这引起了人们对公共卫生的极大关注。这些病例在时空上的分布往往具有高度异质性的特征。因此,人们普遍认为,改进 HFRS 分布的异质映射和定量评估时空疾病转移模式,可以极大地促进对疫情的检测、预防和控制。

方法

提出了一种时空映射和概率逻辑的综合方法,以研究 2005-2013 年期间黑龙江省每月 HFRS 人群标准化发病率的分布情况。我们引入了一种类依赖贝叶斯最大熵(cd-BME)映射方法,将原始数据集划分为离散的发病率类,从而克服了数据异质性和偏态效应,并能同时生成时空 HFRS 发病率估计值及其估计精度。通过十折交叉验证分析,评估了与标准的独立类 BME 实现相比,所提出的 cd-BME 实现的性能。cd-BME 生成的发病率图用于研究时空 HFRS 的传播模式。此外,还使用概率逻辑指标来衡量 HFRS 发病率的时空相关性,这些指标将不同时空点的类依赖 HFRS 发病率联系起来,传递了有关类内和类间关系的有用的补充信息,例如,随着地理距离和时间间隔的增加,不同发病率类之间的 HFRS 转移概率的变化。

结果

每个 HFRS 类在其变化的协方差参数(形状、门限和相关范围)方面都表现出独特的时空变化结构。鉴于 HFRS 数据集的异质性特征,与标准实现相比,cd-BME 实现能够更好地捕捉这些特征(例如,平均绝对误差:0.19 与 0.43 例/105 人),在高发病率水平表现出点状爆发特征,在低发病率水平表现出非点状传播特征。发现类内 HFRS 变化与类间 HFRS 变化有很大的不同。某些发病率类在某个类附近经常发生,但很少在其他类附近发现。不同的类可能有共同的边界,也可能完全被另一个类包围。HFRS 类 0-68.5%在黑龙江省最为普遍(占总面积的 2/3以上)。某些发病率类相邻的概率被用来估计 HFRS 类之间的转移。此外,这些概率描述了 HFRS 发病率类所占据的时空斑块排列的依赖模式。HFRS 转移概率还表明主要类之间存在正相关和负相关关系。HFRS 指标图提供了发病率类之间转移概率的变化的互补可视化,因此它们描述了不同类所占据的时空斑块排列的依赖模式。

结论

cd-BME 方法结合概率逻辑指标,对时空域中异质 HFRS 发病率进行了准确而有信息量的定量表示,并且可以很容易地对结果进行解释。在类似情况下,同样的方法组合也可以用于其他传染病的时空建模和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a87/6380603/2623ff3dcb45/pntd.0007091.g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验