Ketterer Philip, Ananth Adithya N, Laman Trip Diederik S, Mishra Ankur, Bertosin Eva, Ganji Mahipal, van der Torre Jaco, Onck Patrick, Dietz Hendrik, Dekker Cees
Physik Department and Institute for Advanced Study, Technische Universität München, Am Coulombwall 4a, Garching bei München, D-85748, Germany.
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
Nat Commun. 2018 Mar 2;9(1):902. doi: 10.1038/s41467-018-03313-w.
The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.
核孔复合体(NPC)是真核细胞中核运输的守门人。NPC的一个关键组成部分是由被称为FG核孔蛋白(FG-Nups)的内在无序蛋白排列而成的中心轴,它控制着选择性分子运输。在此,我们提出了一种实现人工NPC模拟物的方法,该方法能够控制FG-Nups的类型和拷贝数。我们构建了34纳米宽的三维DNA折纸环,并连接了不同数量的NSP1(一种酵母FG核孔蛋白模型)或NSP1-S(一种亲水突变体)。使用(冷冻)电子显微镜,我们发现与NSP1-S相比,NSP1在环内形成了更密集的凝聚网络。与此一致的是,NSP1的测量离子电导率低于NSP1-S。分子动力学模拟揭示了空间变化的蛋白质密度和电导率,与实验结果高度吻合。我们的技术提供了一个实验平台,用于在完全控制其类型和位置的情况下解密内在无序蛋白的集体行为。