Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.
National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
BMC Med Genomics. 2019 Jan 31;12(Suppl 1):24. doi: 10.1186/s12920-018-0454-7.
Prognostic signatures are vital to precision medicine. However, development of somatic mutation prognostic signatures for cancers remains a challenge. In this study we developed a novel method for discovering somatic mutation based prognostic signatures.
Somatic mutation and clinical data for lung adenocarcinoma (LUAD) and colorectal adenocarcinoma (COAD) from The Cancer Genome Atlas (TCGA) were randomly divided into training (n = 328 for LUAD and 286 for COAD) and validation (n = 167 for LUAD and 141 for COAD) datasets. A novel method of using the log2 ratio of the tumor mutation frequency to the paired normal mutation frequency is computed for each patient and missense mutation. The missense mutation ratios were mean aggregated into gene-level somatic mutation profiles. The somatic mutations were assessed using univariate Cox analysis on the LUAD and COAD training sets separately. Stepwise multivariate Cox analysis resulted in a final gene prognostic signature for LUAD and COAD. Performance was compared to gene prognostic signatures generated using the same pipeline but with different somatic mutation profile representations based on tumor mutation frequency, binary calls, and gene-gene network normalization. Signature high-risk LUAD and COAD cases had worse overall survival compared to the signature low-risk cases in the validation set (log-rank test p-value = 0.0101 for LUAD and 0.0314 for COAD) using mutation tumor frequency ratio (MFR) profiles, while all other methods, including gene-gene network normalization, have statistically insignificant stratification (log-rank test p-value ≥0.05). Most of the genes in the final gene signatures using MFR profiles are cancer-related based on network and literature analysis.
We demonstrated the robustness of MFR profiles and its potential to be a powerful prognostic tool in cancer. The results are robust according to validation testing and the selected genes are biologically relevant.
预后标志物对于精准医学至关重要。然而,开发癌症的体细胞突变预后标志物仍然具有挑战性。在这项研究中,我们开发了一种新的方法来发现基于体细胞突变的预后标志物。
从癌症基因组图谱(TCGA)中随机将肺腺癌(LUAD)和结直肠癌(COAD)的体细胞突变和临床数据分为训练集(LUAD 为 328 例,COAD 为 286 例)和验证集(LUAD 为 167 例,COAD 为 141 例)。对于每个患者和错义突变,计算了一种新的方法,即使用肿瘤突变频率与配对正常突变频率的对数比来计算。将错义突变比平均汇总到基因水平的体细胞突变谱中。使用 LUAD 和 COAD 训练集上的单变量 Cox 分析分别评估体细胞突变。逐步多变量 Cox 分析得出了 LUAD 和 COAD 的最终基因预后标志物。与使用相同管道但基于肿瘤突变频率、二进制调用和基因-基因网络归一化的不同体细胞突变谱表示生成的基因预后标志物进行了性能比较。在验证集中,与签名低风险 LUAD 和 COAD 病例相比,签名高风险 LUAD 和 COAD 病例的总生存率更差(对数秩检验 p 值分别为 0.0101 用于 LUAD 和 0.0314 用于 COAD)使用突变肿瘤频率比(MFR)谱,而所有其他方法,包括基因-基因网络归一化,均具有统计学上无意义的分层(对数秩检验 p 值≥0.05)。使用 MFR 谱的最终基因签名中的大多数基因基于网络和文献分析与癌症有关。
我们证明了 MFR 谱的稳健性及其作为癌症强大预后工具的潜力。根据验证测试,结果是稳健的,所选基因具有生物学相关性。