Suppr超能文献

人类成年多能性:事实与问题。

Human adult pluripotency: Facts and questions.

作者信息

Labusca Luminita, Mashayekhi Kaveh

机构信息

National Institute of Research and Development for Advanced Technical Physics Iasi, Iasi 700349, Romania.

Systems Biomedical Informatics and Modeling, Frankfurt D-45367, Germany.

出版信息

World J Stem Cells. 2019 Jan 26;11(1):1-12. doi: 10.4252/wjsc.v11.i1.1.

Abstract

Cellular reprogramming and induced pluripotent stem cell (IPSC) technology demonstrated the plasticity of adult cell fate, opening a new era of cellular modelling and introducing a versatile therapeutic tool for regenerative medicine. While IPSCs are already involved in clinical trials for various regenerative purposes, critical questions concerning their medium- and long-term genetic and epigenetic stability still need to be answered. Pluripotent stem cells have been described in the last decades in various mammalian and human tissues (such as bone marrow, blood and adipose tissue). We briefly describe the characteristics of human-derived adult stem cells displaying and/or pluripotency while highlighting that the common denominators of their isolation or occurrence within tissue are represented by extreme cellular stress. Spontaneous cellular reprogramming as a survival mechanism favoured by senescence and cellular scarcity could represent an adaptative mechanism. Reprogrammed cells could initiate tissue regeneration or tumour formation dependent on the microenvironment characteristics. Systems biology approaches and lineage tracing within living tissues can be used to clarify the origin of adult pluripotent stem cells and their significance for regeneration and disease.

摘要

细胞重编程和诱导多能干细胞(iPSC)技术展示了成体细胞命运的可塑性,开启了细胞建模的新时代,并为再生医学引入了一种多功能治疗工具。虽然iPSC已参与各种再生目的的临床试验,但关于其中长期遗传和表观遗传稳定性的关键问题仍有待解答。在过去几十年中,已在各种哺乳动物和人类组织(如骨髓、血液和脂肪组织)中发现了多能干细胞。我们简要描述了显示和/或具有多能性的人源成体干细胞的特征,同时强调其在组织内分离或出现的共同特征是极端细胞应激。作为衰老和细胞稀缺所青睐的一种生存机制,自发细胞重编程可能代表一种适应性机制。重编程细胞可根据微环境特征启动组织再生或肿瘤形成。活组织内的系统生物学方法和谱系追踪可用于阐明成体多能干细胞的起源及其对再生和疾病的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec76/6354101/6fb5fffcd9ef/WJSC-11-1-g001.jpg

相似文献

1
Human adult pluripotency: Facts and questions.
World J Stem Cells. 2019 Jan 26;11(1):1-12. doi: 10.4252/wjsc.v11.i1.1.
2
Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
Brain Res. 2016 May 1;1638(Pt A):30-41. doi: 10.1016/j.brainres.2015.09.023. Epub 2015 Sep 28.
3
Can controlled cellular reprogramming be achieved using microRNAs?
Ageing Res Rev. 2010 Oct;9(4):475-83. doi: 10.1016/j.arr.2010.06.002. Epub 2010 Jun 20.
4
Tinkering with transcription factors uncovers plasticity of somatic cells.
Genes Cancer. 2010 Nov;1(11):1089-99. doi: 10.1177/1947601911401908.
5
Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
Stem Cells Transl Med. 2016 May;5(5):694-702. doi: 10.5966/sctm.2015-0017. Epub 2016 Mar 17.
6
Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.
Stem Cells Transl Med. 2016 Apr;5(4):417-26. doi: 10.5966/sctm.2015-0093. Epub 2016 Mar 1.
9
Re-entering the pluripotent state from blood lineage: promises and pitfalls of blood reprogramming.
FEBS Lett. 2019 Dec;593(23):3244-3252. doi: 10.1002/1873-3468.13659. Epub 2019 Nov 26.
10
Emerging opportunities for induced pluripotent stem cells in orthopaedics.
J Orthop Translat. 2019 Mar 25;17:73-81. doi: 10.1016/j.jot.2019.03.001. eCollection 2019 Apr.

引用本文的文献

3
Towards AI-driven longevity research: An overview.
Front Aging. 2023 Mar 1;4:1057204. doi: 10.3389/fragi.2023.1057204. eCollection 2023.
4
Adipose stromal/stem cells in regenerative medicine: Potentials and limitations.
World J Stem Cells. 2020 Jan 26;12(1):1-7. doi: 10.4252/wjsc.v12.i1.1.
5
Monitoring maturation of neural stem cell grafts within a host microenvironment.
World J Stem Cells. 2019 Nov 26;11(11):982-989. doi: 10.4252/wjsc.v11.i11.982.

本文引用的文献

1
Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia.
Cell Rep. 2018 Oct 30;25(5):1109-1117.e5. doi: 10.1016/j.celrep.2018.10.021.
2
Dual Preconditioning: A Novel Strategy to Withstand Mesenchymal Stem Cells against Harsh Microenvironments.
Adv Pharm Bull. 2018 Aug;8(3):465-470. doi: 10.15171/apb.2018.054. Epub 2018 Aug 29.
4
Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering.
Oral Dis. 2018 Oct;24(7):1161-1167. doi: 10.1111/odi.12832. Epub 2018 Apr 24.
5
Cellular reprogramming: A new way to understand aging mechanisms.
Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2). doi: 10.1002/wdev.308. Epub 2018 Jan 19.
7
The integrated stress response in budding yeast lifespan extension.
Microb Cell. 2017 Oct 24;4(11):368-375. doi: 10.15698/mic2017.11.597.
9
Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration.
N Engl J Med. 2017 Aug 24;377(8):792-793. doi: 10.1056/NEJMc1706274.
10
In vivo reprogramming for tissue regeneration and organismal rejuvenation.
Curr Opin Genet Dev. 2017 Oct;46:132-140. doi: 10.1016/j.gde.2017.07.008. Epub 2017 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验