Suppr超能文献

用于诊断医学成像的人工智能的最新技术发展。

Recent technical development of artificial intelligence for diagnostic medical imaging.

作者信息

Nakata Norio

机构信息

Department of Radiology, The Jikei University, School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo, 1058461, Japan.

出版信息

Jpn J Radiol. 2019 Feb;37(2):103-108. doi: 10.1007/s11604-018-0804-6. Epub 2019 Jan 31.

Abstract

Deep learning has caused a third boom of artificial intelligence and great changes of diagnostic medical imaging systems such as radiology, pathology, retinal imaging, dermatology inspection, and endoscopic diagnosis will be expected in the near future. However, various attempts and new methods of deep learning have been proposed in recent years, and their progress is extremely fast. Therefore, at the initial stage when medical artificial intelligence papers were published, the artificial intelligence technology itself may be old technology or well-known general-purpose common technology. Therefore, the author has reviewed state-of-the-art computer vision papers and presentations of 2018 using deep learning technologies, which will have future clinical potentials selected from the point of view of a radiologist such as generative adversarial network, knowledge distillation, and general image data sets for supervised learning.

摘要

深度学习引发了人工智能的第三次热潮,预计在不久的将来,放射学、病理学、视网膜成像、皮肤科检查和内镜诊断等诊断医学成像系统将发生巨大变化。然而,近年来人们提出了各种深度学习的尝试和新方法,其发展速度极快。因此,在医学人工智能论文发表的初期,人工智能技术本身可能已是旧技术或广为人知的通用常规技术。因此,作者回顾了2018年使用深度学习技术的前沿计算机视觉论文和报告,这些技术从放射科医生的角度来看具有未来临床潜力,如生成对抗网络、知识蒸馏以及用于监督学习的通用图像数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验