School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China.
Microb Cell Fact. 2019 Feb 1;18(1):24. doi: 10.1186/s12934-019-1068-2.
Lignocellulosic biomass is one of the most abundant materials for biochemicals production. However, efficient co-utilization of glucose and xylose from the lignocellulosic biomass is a challenge due to the glucose repression in microorganisms. Kluyveromyces marxianus is a thermotolerant and efficient xylose-utilizing yeast. To realize the glucose-xylose co-utilization, analyzing the glucose repression of xylose utilization in K. marxianus is necessary. In addition, a glucose-xylose co-utilization platform strain will facilitate the construction of lignocellulosic biomass-utilizing strains.
Through gene disruption, hexokinase 1 (KmHXK1) and sucrose non-fermenting 1 (KmSNF1) were proved to be involved in the glucose repression of xylose utilization while disruption of the downstream genes of cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway or sucrose non-fermenting 3 (SNF3) glucose-sensing pathway did not alleviate the repression. Furthermore, disruption of the gene of multicopy inhibitor of GAL gene expression (KmMIG1) alleviated the glucose repression on some nonglucose sugars (galactose, sucrose, and raffinose) but still kept glucose repression of xylose utilization. Real-time PCR analysis of the xylose utilization related genes transcription confirmed these results, and besides, revealed that xylitol dehydrogenase gene (KmXYL2) was the critical gene for xylose utilization and stringently regulated by glucose repression. Many other genes of candidate targets interacting with SNF1 were also evaluated by disruption, but none proved to be the key regulator in the pathway of the glucose repression on xylose utilization. Therefore, there may exist other signaling pathway(s) for glucose repression on xylose consumption. Based on these results, a thermotolerant xylose-glucose co-consumption platform strain of K. marxianus was constructed. Then, exogenous xylose reductase and xylose-specific transporter genes were overexpressed in the platform strain to obtain YHY013. The YHY013 could efficiently co-utilized the glucose and xylose from corncob hydrolysate or xylose mother liquor for xylitol production (> 100 g/L) even with inexpensive organic nitrogen sources.
The analysis of the glucose repression in K. marxianus laid the foundation for construction of the glucose-xylose co-utilizing platform strain. The efficient xylitol production strain further verified the potential of the platform strain in exploitation of lignocellulosic biomass.
木质纤维素生物质是生物化学制品生产中最丰富的材料之一。然而,由于微生物中的葡萄糖抑制作用,有效共利用木质纤维素生物质中的葡萄糖和木糖是一个挑战。马克斯克鲁维酵母是一种耐热且高效利用木糖的酵母。为了实现葡萄糖-木糖共利用,有必要分析马克斯克鲁维酵母中木糖利用的葡萄糖抑制作用。此外,葡萄糖-木糖共利用平台菌株将有助于构建木质纤维素生物质利用菌株。
通过基因敲除,己糖激酶 1(KmHXK1)和蔗糖非发酵 1(KmSNF1)被证明参与了木糖利用的葡萄糖抑制作用,而环腺苷酸-蛋白激酶 A(cAMP-PKA)信号通路或蔗糖非发酵 3(SNF3)葡萄糖感应途径的下游基因的敲除并不能减轻这种抑制作用。此外,多拷贝 GAL 基因表达抑制剂(KmMIG1)基因的敲除减轻了一些非葡萄糖糖(半乳糖、蔗糖和棉子糖)对葡萄糖的抑制作用,但仍保持了木糖利用的葡萄糖抑制作用。木糖利用相关基因转录的实时 PCR 分析证实了这些结果,此外,还表明木糖醇脱氢酶基因(KmXYL2)是木糖利用的关键基因,受到葡萄糖抑制的严格调控。通过敲除还评估了与 SNF1 相互作用的许多其他候选靶基因,但没有一个被证明是木糖利用的葡萄糖抑制途径中的关键调节剂。因此,可能存在其他信号通路来抑制木糖的消耗。基于这些结果,构建了马克斯克鲁维酵母的耐热木糖-葡萄糖共消耗平台菌株。然后,在平台菌株中过表达外源木糖还原酶和木糖特异性转运蛋白基因,获得 YHY013。YHY013 可以有效地共利用玉米芯水解物或木糖母液中的葡萄糖和木糖来生产木糖醇(>100 g/L),即使使用廉价的有机氮源。
对马克斯克鲁维酵母中葡萄糖抑制作用的分析为构建葡萄糖-木糖共利用平台菌株奠定了基础。高效木醇生产菌株进一步验证了该平台菌株在木质纤维素生物质开发中的潜力。