Suppr超能文献

使用 MAGeCKFlute 对汇集的 CRISPR 遗传筛选进行综合分析。

Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute.

机构信息

Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Department of Geriatrics, Shanghai General Hospital, Shanghai, China.

出版信息

Nat Protoc. 2019 Mar;14(3):756-780. doi: 10.1038/s41596-018-0113-7. Epub 2019 Feb 1.

Abstract

Genome-wide screening using CRISPR coupled with nuclease Cas9 (CRISPR-Cas9) is a powerful technology for the systematic evaluation of gene function. Statistically principled analysis is needed for the accurate identification of gene hits and associated pathways. Here, we describe how to perform computational analysis of CRISPR screens using the MAGeCKFlute pipeline. MAGeCKFlute combines the MAGeCK and MAGeCK-VISPR algorithms and incorporates additional downstream analysis functionalities. MAGeCKFlute is distinguished from other currently available tools by its comprehensive pipeline, which contains a series of functions for analyzing CRISPR screen data. This protocol explains how to use MAGeCKFlute to perform quality control (QC), normalization, batch effect removal, copy-number bias correction, gene hit identification and downstream functional enrichment analysis for CRISPR screens. We also describe gene identification and data analysis in CRISPR screens involving drug treatment. Completing the entire MAGeCKFlute pipeline requires ~3 h on a desktop computer running Linux or Mac OS with R support.

摘要

利用 CRISPR 与核酸酶 Cas9(CRISPR-Cas9)进行全基因组筛选是一种用于系统评估基因功能的强大技术。需要进行基于统计学原理的分析,才能准确识别基因命中和相关途径。在这里,我们描述了如何使用 MAGeCKFlute 管道进行 CRISPR 筛选的计算分析。MAGeCKFlute 结合了 MAGeCK 和 MAGeCK-VISPR 算法,并纳入了其他下游分析功能。MAGeCKFlute 与其他当前可用的工具的区别在于其全面的管道,其中包含一系列用于分析 CRISPR 筛选数据的功能。本协议解释了如何使用 MAGeCKFlute 来执行 CRISPR 筛选的质量控制 (QC)、归一化、批次效应去除、拷贝数偏差校正、基因命中识别和下游功能富集分析。我们还描述了涉及药物处理的 CRISPR 筛选中的基因识别和数据分析。在配备 R 支持的 Linux 或 Mac OS 桌面计算机上,完成整个 MAGeCKFlute 管道大约需要 3 小时。

相似文献

1
Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute.
Nat Protoc. 2019 Mar;14(3):756-780. doi: 10.1038/s41596-018-0113-7. Epub 2019 Feb 1.
2
Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.
Genome Biol. 2015 Dec 16;16:281. doi: 10.1186/s13059-015-0843-6.
3
Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
Methods Mol Biol. 2019;1869:169-188. doi: 10.1007/978-1-4939-8805-1_15.
5
Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
J Vis Exp. 2019 Sep 4(151). doi: 10.3791/59780.
6
Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
BMC Genomics. 2019 Mar 19;20(1):225. doi: 10.1186/s12864-019-5601-9.
7
CRISP-view: a database of functional genetic screens spanning multiple phenotypes.
Nucleic Acids Res. 2021 Jan 8;49(D1):D848-D854. doi: 10.1093/nar/gkaa809.
8
A method for benchmarking genetic screens reveals a predominant mitochondrial bias.
Mol Syst Biol. 2021 May;17(5):e10013. doi: 10.15252/msb.202010013.
9
Key elements for designing and performing a CRISPR/Cas9-based genetic screen.
J Genet Genomics. 2017 Sep 20;44(9):439-449. doi: 10.1016/j.jgg.2017.09.005. Epub 2017 Sep 22.
10
A benchmark of algorithms for the analysis of pooled CRISPR screens.
Genome Biol. 2020 Mar 9;21(1):62. doi: 10.1186/s13059-020-01972-x.

引用本文的文献

3
Targeting RPS6KC1 to overcome enzalutamide resistance in prostate cancer.
Biomark Res. 2025 Aug 23;13(1):109. doi: 10.1186/s40364-025-00822-x.
6
Cardiolipin-mimic lipid nanoparticles without antibody modification delivered senolytic in vivo CAR-T therapy for inflamm-aging.
Cell Rep Med. 2025 Jul 15;6(7):102209. doi: 10.1016/j.xcrm.2025.102209. Epub 2025 Jul 1.
7
Mechanism of cytarabine-induced neurotoxicity.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09210-9.
8
Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation.
Genome Biol. 2025 Jun 12;26(1):164. doi: 10.1186/s13059-025-03640-4.
10
A specific form of cPRC1 containing CBX4 is co-opted to mediate oncogenic gene repression in diffuse midline glioma.
Mol Cell. 2025 Jun 5;85(11):2110-2127.e7. doi: 10.1016/j.molcel.2025.04.026. Epub 2025 May 21.

本文引用的文献

1
CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity.
Nature. 2017 Sep 7;549(7670):101-105. doi: 10.1038/nature23643. Epub 2017 Aug 16.
2
In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.
Nature. 2017 Jul 27;547(7664):413-418. doi: 10.1038/nature23270. Epub 2017 Jul 19.
3
Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions.
Nat Biotechnol. 2017 May;35(5):463-474. doi: 10.1038/nbt.3834. Epub 2017 Mar 20.
4
Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.
Cell. 2017 Feb 23;168(5):890-903.e15. doi: 10.1016/j.cell.2017.01.013. Epub 2017 Feb 2.
6
Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.
Cancer Discov. 2016 Aug;6(8):914-29. doi: 10.1158/2159-8290.CD-16-0154. Epub 2016 Jun 3.
7
Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes.
Nat Biotechnol. 2016 Jun;34(6):634-6. doi: 10.1038/nbt.3567. Epub 2016 May 9.
8
BAGEL: a computational framework for identifying essential genes from pooled library screens.
BMC Bioinformatics. 2016 Apr 16;17:164. doi: 10.1186/s12859-016-1015-8.
9
Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.
Genome Biol. 2015 Dec 16;16:281. doi: 10.1186/s13059-015-0843-6.
10
Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.
Cell Rep. 2015 Dec 22;13(11):2425-2439. doi: 10.1016/j.celrep.2015.11.021. Epub 2015 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验