Suppr超能文献

基于静息态和动态功能磁共振成像的功能连接组所代表的信息在很大程度上是相似的。

Static and dynamic fMRI-derived functional connectomes represent largely similar information.

作者信息

Matkovič Andraž, Anticevic Alan, Murray John D, Repovš Grega

机构信息

Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Netw Neurosci. 2023 Dec 22;7(4):1266-1301. doi: 10.1162/netn_a_00325. eCollection 2023.

Abstract

Functional connectivity (FC) of blood oxygen level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate), and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.

摘要

可以使用对时间点时间顺序的敏感性(静态与动态)以及估计单个边时考虑的区域数量(双变量与多变量)不同的方法来估计血氧水平依赖(BOLD)功能磁共振成像(fMRI)时间序列的功能连接性(FC)。先前的研究表明,动态FC比静态FC能解释FC波动和行为中的更多变异性。我们的目的是在这两个维度上系统地比较各种方法。我们比较了五种FC方法:皮尔逊/完全相关性(静态,双变量)、滞后相关性(动态,双变量)、偏相关性(静态,多变量)以及有无自连接的多变量自回归模型(动态,多变量)。我们通过以下方式比较这些方法:(i)评估FC矩阵之间的相似性,(ii)比较节点中心性度量,以及(iii)比较脑-行为关联模式。尽管FC估计值不会因对时间顺序的敏感性而有所不同,但我们观察到多变量和双变量FC方法之间存在差异。动态FC估计值与静态FC估计值高度相关,尤其是在比较组水平的FC矩阵时。同样地,使用动态和静态FC方法获得的脑-行为关联模式之间也存在高度相关性。我们得出结论,动态FC估计值所代表的信息与静态FC的信息在很大程度上相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3077/10631791/3915be7236f2/netn-7-4-1266-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验