Matkovič Andraž, Anticevic Alan, Murray John D, Repovš Grega
Department of Psychology, Faculty of Arts, University of Ljubljana.
Department of Psychiatry, Yale University School of Medicine, New Haven, United States.
bioRxiv. 2023 May 16:2023.01.24.525348. doi: 10.1101/2023.01.24.525348.
Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
可以使用对时间点时间顺序的敏感度(静态与动态)以及估计单个边时所考虑区域数量(双变量与多变量)不同的方法来估计血氧水平依赖(BOLD)功能磁共振成像(fMRI)时间序列的功能连接性(FC)。先前的研究表明,动态功能连接性比静态功能连接性能解释更多功能连接性波动和行为的变异性。我们的目的是系统地比较这两个维度上的方法。我们比较了五种功能连接性方法:皮尔逊/完全相关性(静态,双变量)、滞后相关性(动态,双变量)、偏相关性(静态,多变量)以及有无自连接的多变量自回归模型(动态,多变量)。我们通过以下方式比较这些方法:(i)评估功能连接性矩阵之间的相似性,(ii)比较节点中心性度量,以及(iii)比较脑-行为关联模式。尽管功能连接性估计值不会因对时间顺序的敏感度而有所不同,但我们观察到多变量和双变量功能连接性方法之间存在差异。动态功能连接性估计值与静态功能连接性估计值高度相关,尤其是在比较组水平的功能连接性矩阵时。同样,使用动态和静态功能连接性方法获得的脑-行为关联模式之间也存在高度相关性。我们得出结论,动态功能连接性估计值所代表的信息与静态功能连接性的信息在很大程度上相似。