Suppr超能文献

通过多任务稀疏典型相关分析和回归识别阿尔茨海默病的影像遗传学生物标志物

Identifying Imaging Genetics Biomarkers of Alzheimer's Disease by Multi-Task Sparse Canonical Correlation Analysis and Regression.

作者信息

Ke Fengchun, Kong Wei, Wang Shuaiqun

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Front Genet. 2021 Aug 5;12:706986. doi: 10.3389/fgene.2021.706986. eCollection 2021.

Abstract

Imaging genetics combines neuroimaging and genetics to assess the relationships between genetic variants and changes in brain structure and metabolism. Sparse canonical correlation analysis (SCCA) models are well-known tools for identifying meaningful biomarkers in imaging genetics. However, most SCCA models incorporate only diagnostic status information, which poses challenges for finding disease-specific biomarkers. In this study, we proposed a multi-task sparse canonical correlation analysis and regression (MT-SCCAR) model to reveal disease-specific associations between single nucleotide polymorphisms and quantitative traits derived from multi-modal neuroimaging data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. MT-SCCAR uses complementary information carried by multiple-perspective cognitive scores and encourages group sparsity on genetic variants. In contrast with two other multi-modal SCCA models, MT-SCCAR embedded more accurate neuropsychological assessment information through linear regression and enhanced the correlation coefficients, leading to increased identification of high-risk brain regions. Furthermore, MT-SCCAR identified primary genetic risk factors for Alzheimer's disease (AD), including rs429358, and found some association patterns between genetic variants and brain regions. Thus, MT-SCCAR contributes to deciphering genetic risk factors of brain structural and metabolic changes by identifying potential risk biomarkers.

摘要

影像遗传学将神经影像学和遗传学相结合,以评估基因变异与脑结构及代谢变化之间的关系。稀疏典型相关分析(SCCA)模型是影像遗传学中用于识别有意义生物标志物的知名工具。然而,大多数SCCA模型仅纳入诊断状态信息,这给寻找疾病特异性生物标志物带来了挑战。在本研究中,我们提出了一种多任务稀疏典型相关分析与回归(MT-SCCAR)模型,以揭示阿尔茨海默病神经影像学倡议(ADNI)队列中多模态神经影像数据衍生的单核苷酸多态性与定量性状之间的疾病特异性关联。MT-SCCAR利用多视角认知分数携带的互补信息,并鼓励基因变异上的组稀疏性。与其他两种多模态SCCA模型相比,MT-SCCAR通过线性回归嵌入了更准确的神经心理学评估信息,并提高了相关系数,从而增加了对高风险脑区的识别。此外,MT-SCCAR确定了阿尔茨海默病(AD)的主要遗传风险因素,包括rs429358,并发现了基因变异与脑区之间的一些关联模式。因此,MT-SCCAR通过识别潜在风险生物标志物,有助于解读脑结构和代谢变化的遗传风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee6/8375409/4be8ccb32ed4/fgene-12-706986-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验