Correa Nicolle M, Li Yi-Ou, Adalı Tülay, Calhoun Vince D
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 USA (e-mail:
IEEE J Sel Top Signal Process. 2008 Dec 1;2(6):998-1007. doi: 10.1109/JSTSP.2008.2008265.
Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.
通常,通过功能磁共振成像(fMRI)、结构磁共振成像(sMRI)和脑电图(EEG)等成像技术获取的数据是分别进行分析的。然而,融合来自这些互补模态的信息有望为跨脑网络的连通性以及疾病引起的变化提供更多见解。我们提出了一种在特征层面的数据融合方案,使用典型相关分析(CCA)来确定跨模态的受试者间协方差。正如我们通过模拟结果和对真实数据的应用所展示的那样,多模态CCA(mCCA)被证明是一种灵活且强大的方法,用于发现各种数据类型之间的关联。我们通过将该方法应用于两个数据集来展示其通用性,一个是fMRI和EEG数据集,另一个是fMRI和sMRI数据集,这两个数据集均采集自被诊断为精神分裂症的患者和健康对照。针对听觉Oddball任务收集的fMRI和EEG数据的CCA结果揭示了颞叶和运动区域与N2和P3峰值之间的关联。对于应用于为听觉感觉运动任务收集的fMRI和sMRI数据,CCA结果显示了fMRI与灰质之间有趣的联合关系,与健康对照相比,精神分裂症患者在运动区域表现出更多的功能活动而在与较少灰质相关的颞叶区域表现出较少的活动。此外,我们将我们的方案与基于独立成分分析的融合方法联合独立成分分析(joint - ICA)进行了比较,该方法已被证明适用于此类研究,并指出这两种方法为数据融合提供了互补的视角。