Suppr超能文献

“我们决定优化”——培训养老院工作人员在痴呆症护理中进行预先护理计划谈话的共同决策技能:一项预试验后测试的群组随机试验方案。

'We DECide optimized' - training nursing home staff in shared decision-making skills for advance care planning conversations in dementia care: protocol of a pretest-posttest cluster randomized trial.

机构信息

LUCAS, KU Leuven, Minderbroedersstraat 8, 3000, Leuven, Belgium.

出版信息

BMC Geriatr. 2019 Feb 4;19(1):33. doi: 10.1186/s12877-019-1044-z.

Abstract

BACKGROUND

Due to the gradual loss of function, it is crucial for persons with dementia to discuss advance care planning in due course. However, nursing home staff, residents and their families feel uncomfortable to start this type of conversation, resulting in unknown (care) preferences. 'We DECide optimized' will provide tools to nursing home staff for discussing advance care planning. The primary objective is to enhance the level of shared decision-making in advance care planning conversations. We hypothesize that the training will enhance the perception of the importance, competence and frequency in which participants engage in advance care planning conversations. The secondary objective is to assess barriers and facilitators in the implementation of advance care planning policies at the ward level.

METHODS

'We DECide optimized' will consist of two four-hour workshops and a homework assignment between sessions. Training components will include information on advance care planning and shared decision-making, role-play exercises and group discussions on implementation barriers at the ward level. Participating wards will receive supporting materials to stimulate residents and their families to initiate conversations. The study uses a cluster randomized controlled design, with 65 Flemish nursing home wards taking part (311 staff members). Data will be collected through a pretest-posttest model, with measurements up to 9 months after training. The RE-AIM framework will be used to evaluate the effectiveness of the implementation. Quantitative and qualitative data at the clinical, organizational and resident level will be collected.

DISCUSSION

This study describes a hands-on, in-depth and multi-level training approach to improve shared decision-making in advance care planning conversations. By providing tools to ward staff, engaging the management and informing residents and their families, 'We DECide optimized' aims to decrease evidence-based barriers and to provide all stakeholders with incentives to engage in conversations about (care) preferences in an informative and participatory manner.

摘要

背景

由于功能逐渐丧失,痴呆症患者在适当的时候讨论预先护理计划至关重要。然而,养老院工作人员、居民及其家属在开始此类对话时感到不舒服,导致未知的(护理)偏好。“我们决定优化”将为养老院工作人员提供讨论预先护理计划的工具。主要目标是提高预先护理计划对话中共享决策的水平。我们假设培训将增强参与者对预先护理计划对话的重要性、能力和频率的感知。次要目标是评估病房层面实施预先护理计划政策的障碍和促进因素。

方法

“我们决定优化”将包括两个四小时的研讨会和一个课程之间的作业。培训内容将包括预先护理计划和共享决策信息、角色扮演练习以及病房层面实施障碍的小组讨论。参与病房将收到支持材料,以激发居民及其家属发起对话。该研究采用集群随机对照设计,共有 65 个佛兰芒养老院病房参与(311 名工作人员)。通过预测试后测试模型收集数据,培训后最长可达 9 个月进行测量。将使用 RE-AIM 框架评估实施的有效性。将在临床、组织和居民层面收集定量和定性数据。

讨论

本研究描述了一种实用、深入和多层次的培训方法,以改善预先护理计划对话中的共享决策。通过为病房工作人员提供工具、让管理人员参与并告知居民及其家属,“我们决定优化”旨在减少循证障碍,并为所有利益相关者提供激励,以信息丰富和参与的方式就(护理)偏好进行对话。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/674b/6360673/b10334f03808/12877_2019_1044_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验