Suppr超能文献

多室磁共振指纹识别

Multicompartment Magnetic Resonance Fingerprinting.

作者信息

Tang Sunli, Fernandez-Granda Carlos, Lannuzel Sylvain, Bernstein Brett, Lattanzi Riccardo, Cloos Martijn, Knoll Florian, Assländer Jakob

机构信息

Courant Institute of Mathematical Sciences, New York University.

Center for Data Science, New York University.

出版信息

Inverse Probl. 2018 Sep;34(9). doi: 10.1088/1361-6420/aad1c3. Epub 2018 Jul 24.

Abstract

Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin- relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects intravoxel structure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the measured magnetization signal as a linear combination of a few elements in a precomputed fingerprint dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-𝓁-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom-imaging experiment on a clinical magnetic-resonance system.

摘要

磁共振指纹识别(MRF)是一种从磁共振数据中定量估计自旋弛豫参数的技术。当前大多数MRF方法假定每个体素中仅存在一种组织,这忽略了体素内结构,并且可能在组织之间的边界处的恢复参数图中导致伪影。在这项工作中,我们提出了一种多成分MRF模型,该模型考虑了每个体素中存在多种组织的情况。通过在每个体素处迭代求解稀疏线性逆问题,使该模型与数据拟合,以便将测量的磁化信号表示为预先计算的指纹字典中少数元素的线性组合。由于字典的高局部相干性,通常用于稀疏恢复和压缩感知的基于阈值的方法在这种情况下效果不佳。相反,我们通过应用重新加权的𝓁范数正则化来解决这个具有挑战性的稀疏恢复问题,该正则化使用有效的内点法实现。所提出的方法在不同噪声水平和欠采样因子下的模拟数据以及临床磁共振系统上的受控体模成像实验中得到了验证。

相似文献

1
Multicompartment Magnetic Resonance Fingerprinting.多室磁共振指纹识别
Inverse Probl. 2018 Sep;34(9). doi: 10.1088/1361-6420/aad1c3. Epub 2018 Jul 24.
4
Partial volume mapping using magnetic resonance fingerprinting.磁共振指纹成像的部分容积映射。
NMR Biomed. 2019 May;32(5):e4082. doi: 10.1002/nbm.4082. Epub 2019 Mar 1.
9
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

引用本文的文献

6
MR fingerprinting of the prostate.前列腺的 MR 成像技术
MAGMA. 2022 Aug;35(4):557-571. doi: 10.1007/s10334-022-01012-8. Epub 2022 Apr 13.
8
Sparse Recovery Beyond Compressed Sensing: Separable Nonlinear Inverse Problems.超越压缩感知的稀疏恢复:可分离非线性逆问题
IEEE Trans Inf Theory. 2020 Sep;66(9):5904-5926. doi: 10.1109/tit.2020.2985015. Epub 2020 Apr 1.

本文引用的文献

3
Pseudo Steady-State Free Precession for MR-Fingerprinting.用于磁共振指纹识别的伪稳态自由进动
Magn Reson Med. 2017 Mar;77(3):1151-1161. doi: 10.1002/mrm.26202. Epub 2016 Apr 15.
6
Quantitative MRI techniques of cartilage composition.软骨成分的定量 MRI 技术。
Quant Imaging Med Surg. 2013 Jun;3(3):162-74. doi: 10.3978/j.issn.2223-4292.2013.06.04.
7
Magnetic resonance fingerprinting.磁共振指纹成像。
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.
10
Quantitative relaxometry of the brain.大脑的定量弛豫测量法。
Top Magn Reson Imaging. 2010 Apr;21(2):101-13. doi: 10.1097/RMR.0b013e31821e56d8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验