Translational Chemical Biology Laboratory, Division of Polymer Chemistry, Department of Chemistry-Ångstrom , Uppsala University , Uppsala 751 21 , Sweden.
Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technologies and BioMediTech Institute , Tampere University , Korkeakoulunkatu 3 , Tampere 33720 , Finland.
Biomacromolecules. 2019 Mar 11;20(3):1412-1420. doi: 10.1021/acs.biomac.8b01830. Epub 2019 Feb 13.
The disulfide bond plays a crucial role in protein biology and has been exploited by scientists to develop antibody-drug conjugates, sensors, and for the immobilization other biomolecules to materials surfaces. In spite of its versatile use, the disulfide chemistry suffers from some inevitable limitations such as the need for basic conditions (pH > 8.5), strong oxidants, and long reaction times. We demonstrate here that thiol-substrates containing electron-withdrawing groups at the β-position influence the deprotonation of the thiol group, which is the key reaction intermediate in the formation of disulfide bonds. Evaluation of reaction kinetics using small molecule substrate such as l-cysteine indicated disulfide formation at a 2.8-fold higher ( k = 5.04 × 10 min) reaction rate as compared to the conventional thiol substrate, namely 3-mercaptopropionic acid ( k = 1.80 × 10 min) at physiological pH (pH 7.4). Interestingly, the same effect could not be observed when N-acetyl-l-cysteine substrate ( k = 0.51 × 10 min) was used. We further grafted such thiol-containing molecules (cysteine, N-acetyl-cysteine, and 3-mercaptopropionic acid) to a biopolymer namely hyaluronic acid (HA) and determined the p K value of different thiol groups by spectrophotometric analysis. The electron-withdrawing group at the β-position reduced the p K of the thiol group to 7.0 for HA-cysteine (HA-Cys); 7.4 for N-acetyl cysteine (HA-ActCys); and 8.1 for HA-thiol (HA-SH) derivatives, respectively. These experiments further confirmed that the concentration of thiolate (R-S) ions could be increased with the presence of electron-withdrawing groups, which could facilitate disulfide cross-linked hydrogel formation at physiological pH. Indeed, HA grafted with cysteine or N-acetyl groups formed hydrogels within 3.5 min or 10 h, respectively, at pH 7.4. After completion of cross-linking reaction, both gels demonstrated a storage modulus G' ≈ 3300-3500 Pa, which indicated comparable levels of cross-linking. The HA-SH gel, on the other hand, did not form any gel at pH 7.4 even after 24 h. Finally, we demonstrated that the newly prepared hydrogels exhibited excellent hydrolytic stability but can be degraded by cell-directed processes (enzymatic and reductive degradation). We believe our study provides a valuable insight on the factors governing the disulfide formation and our results are useful to develop strategies that would facilitate generation of stable thiol functionalized biomolecules or promote fast thiol oxidation according to the biomedical needs.
二硫键在蛋白质生物学中起着至关重要的作用,科学家们利用它来开发抗体-药物偶联物、传感器,并将其他生物分子固定在材料表面。尽管二硫键具有多种用途,但它也存在一些不可避免的局限性,例如需要碱性条件(pH>8.5)、强氧化剂和较长的反应时间。我们在这里证明,β位含有吸电子基团的硫醇底物会影响硫醇基团的去质子化,这是形成二硫键的关键反应中间体。使用小分子底物(如 L-半胱氨酸)评估反应动力学表明,与传统的硫醇底物(即 3-巯基丙酸,k=1.80×10-2min-1)相比,二硫键的形成速率提高了 2.8 倍(k=5.04×10-2min-1),在生理 pH(pH7.4)下。有趣的是,当使用 N-乙酰-L-半胱氨酸底物(k=0.51×10-2min-1)时,无法观察到相同的效果。我们进一步将含有这些硫醇的分子(半胱氨酸、N-乙酰半胱氨酸和 3-巯基丙酸)接枝到生物聚合物透明质酸(HA)上,并通过分光光度分析确定不同硫醇基团的 pK 值。β位的吸电子基团将巯基的 pK 值降低到 7.0(对于 HA-半胱氨酸(HA-Cys);7.4(对于 N-乙酰半胱氨酸(HA-ActCys);和 8.1(对于 HA-硫醇(HA-SH)衍生物)。这些实验进一步证实,随着吸电子基团的存在,可以增加硫醇盐(R-S)离子的浓度,这有助于在生理 pH 下形成二硫键交联水凝胶。事实上,在 pH7.4 下,接枝半胱氨酸或 N-乙酰基的透明质酸分别在 3.5 分钟或 10 小时内形成水凝胶。交联反应完成后,两种凝胶的储能模量 G'≈3300-3500Pa,表明交联水平相当。另一方面,HA-SH 凝胶即使在 24 小时后也不能在 pH7.4 下形成任何凝胶。最后,我们证明了新制备的水凝胶具有优异的水解稳定性,但可以通过细胞导向的过程(酶促和还原降解)进行降解。我们相信,我们的研究为二硫键形成的因素提供了有价值的见解,我们的结果有助于根据生物医学需求开发促进稳定硫醇功能化生物分子生成或促进快速硫醇氧化的策略。