Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.
Computational Biophysics Research Team , RIKEN Center for Computational Science , 7-1-26 Minatojima-Minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan.
J Chem Theory Comput. 2019 Mar 12;15(3):1924-1938. doi: 10.1021/acs.jctc.8b01193. Epub 2019 Feb 21.
Quantum mechanics/molecular mechanics (QM/MM) calculations are applied for anharmonic vibrational analyses of biomolecules and solvated molecules. The QM/MM method is implemented into a molecular dynamics (MD) program, GENESIS, by interfacing with external electronic structure programs. Following the geometry optimization and the harmonic normal-mode analysis based on a partial Hessian, the anharmonic potential energy surface (PES) is generated from QM/MM energies and gradients calculated at grid points. The PES is used for vibrational self-consistent field (VSCF) and post-VSCF calculations to compute the vibrational spectrum. The method is first applied to a phosphate ion in solution. With both the ion and neighboring water molecules taken as a QM region, IR spectra of representative hydration structures are calculated by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2) at the level of B3LYP/cc-pVTZ and TIP3P force field. A weight-average of IR spectra over the structures reproduces the experimental spectrum with a mean absolute deviation of 16 cm. Then, the method is applied to an enzyme, P450 nitric oxide reductase (P450nor), with the NO molecule bound to a ferric (Fe) heme. Starting from snapshot structures obtained from MD simulations of P450nor in solution, QM/MM calculations have been carried out at the level of B3LYP-D3/def2-SVP(D). The spin state of Fe(NO) is likely a closed-shell singlet state based on a ratio of N-O and Fe-NO stretching frequencies (ν and ν) calculated for closed- and open-shell singlet states. The calculated ν and ν overestimate the experimental ones by 120 and 75 cm, respectively. The electronic structure and solvation of Fe(NO) affect the structure around the heme of P450nor leading to an increase in ν and ν.
量子力学/分子力学 (QM/MM) 计算被应用于生物分子和溶剂化分子的非谐振动分析。QM/MM 方法通过与外部电子结构程序接口,被实现到分子动力学 (MD) 程序 GENESIS 中。在基于部分 Hessian 的几何优化和简谐正则模式分析之后,从在网格点处计算的 QM/MM 能量和梯度生成非谐势能面 (PES)。PES 用于振动自洽场 (VSCF) 和后 VSCF 计算以计算振动光谱。该方法首先应用于溶液中的磷酸离子。将离子和相邻水分子都作为 QM 区域,使用 B3LYP/cc-pVTZ 和 TIP3P 力场的二级振动准简并微扰理论 (VQDPT2) 计算代表性水合结构的红外光谱。结构的红外光谱的加权平均值再现实验光谱,平均绝对偏差为 16 cm。然后,该方法应用于与一氧化氮分子结合到铁 (Fe) 血红素的酶 P450 一氧化氮还原酶 (P450nor)。从 P450nor 在溶液中的 MD 模拟获得的快照结构开始,在 B3LYP-D3/def2-SVP(D) 水平上进行了 QM/MM 计算。基于为闭壳层单重态和开壳层单重态计算的 N-O 和 Fe-NO 伸缩频率 (ν 和 ν) 的比值,Fe(NO)的自旋态可能是闭壳层单重态。计算的 ν 和 ν 分别比实验值高估了 120 和 75 cm。Fe(NO) 的电子结构和溶剂化作用影响 P450nor 血红素周围的结构,导致 ν 和 ν 增加。