Zhu Yitan, Mohamed Abdallah S R, Lai Stephen Y, Yang Shengjie, Kanwar Aasheesh, Wei Lin, Kamal Mona, Sengupta Subhajit, Elhalawani Hesham, Skinner Heath, Mackin Dennis S, Shiao Jay, Messer Jay, Wong Andrew, Ding Yao, Zhang Lifei, Court Laurence, Ji Yuan, Fuller Clifton D
NorthShore University HealthSystem, Evanston, IL.
The University of Texas MD Anderson Cancer Center, Houston, TX.
JCO Clin Cancer Inform. 2019 Feb;3:1-9. doi: 10.1200/CCI.18.00073.
Recent data suggest that imaging radiomic features of a tumor could be indicative of important genomic biomarkers. Understanding the relationship between radiomic and genomic features is important for basic cancer research and future patient care. We performed a comprehensive study to discover the imaginggenomic associations in head and neck squamous cell carcinoma (HNSCC) and explore the potential of predicting tumor genomic alternations using radiomic features.
Our retrospective study integrated whole-genome multiomics data from The Cancer Genome Atlas with matched computed tomography imaging data from The Cancer Imaging Archive for the same set of 126 patients with HNSCC. Linear regression and gene set enrichment analysis were used to identify statistically significant associations between radiomic imaging and genomic features. Random forest classifier was used to predict the status of two key HNSCC molecular biomarkers, human papillomavirus and disruptive TP53 mutation, on the basis of radiomic features.
Widespread and statistically significant associations were discovered between genomic features (including microRNA expression, somatic mutations, and transcriptional activity, copy number variations, and promoter region DNA methylation changes of pathways) and radiomic features characterizing the size, shape, and texture of tumor. Prediction of human papillomavirus and TP53 mutation status using radiomic features achieved areas under the receiver operating characteristic curve of 0.71 and 0.641, respectively.
Our exploratory study suggests that radiomic features are associated with genomic characteristics at multiple molecular layers in HNSCC and provides justification for continued development of radiomics as biomarkers for relevant genomic alterations in HNSCC.
近期数据表明,肿瘤的影像组学特征可能指示重要的基因组生物标志物。了解影像组学与基因组特征之间的关系对于基础癌症研究和未来患者护理至关重要。我们进行了一项全面研究,以发现头颈部鳞状细胞癌(HNSCC)中的影像基因组关联,并探索使用影像组学特征预测肿瘤基因组改变的潜力。
我们的回顾性研究将来自癌症基因组图谱的全基因组多组学数据与来自癌症影像存档的匹配计算机断层扫描成像数据整合在一起,这些数据来自同一组126例HNSCC患者。使用线性回归和基因集富集分析来确定影像组学成像与基因组特征之间的统计学显著关联。基于影像组学特征,使用随机森林分类器预测HNSCC两个关键分子生物标志物人乳头瘤病毒和TP53破坏性突变的状态。
在基因组特征(包括微小RNA表达、体细胞突变、转录活性、拷贝数变异以及通路启动子区域DNA甲基化变化)与表征肿瘤大小、形状和纹理的影像组学特征之间发现了广泛且具有统计学意义的关联。使用影像组学特征预测人乳头瘤病毒和TP53突变状态时,受试者工作特征曲线下面积分别达到0.71和0.641。
我们的探索性研究表明,影像组学特征与HNSCC多个分子层面的基因组特征相关,并为继续开发影像组学作为HNSCC相关基因组改变的生物标志物提供了依据。