Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
PLoS One. 2024 Feb 12;19(2):e0298111. doi: 10.1371/journal.pone.0298111. eCollection 2024.
BACKGROUND: The prognosis of nasopharyngeal carcinoma (NPC) is challenging due to late-stage identification and frequently undetectable Epstein-Barr virus (EBV) DNA. Incorporating radiomic features, which quantify tumor characteristics from imaging, may enhance prognosis assessment. PURPOSE: To investigate the predictive power of radiomic features on overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS) in NPC. MATERIALS AND METHODS: A retrospective analysis of 183 NPC patients treated with chemoradiotherapy from 2010 to 2019 was conducted. All patients were followed for at least three years. The pretreatment CT images with contrast medium, MR images (T1W and T2W), as well as gross tumor volume (GTV) contours, were used to extract radiomic features using PyRadiomics v.2.0. Robust and efficient radiomic features were chosen using the intraclass correlation test and univariate Cox proportional hazard regression analysis. They were then combined with clinical data including age, gender, tumor stage, and EBV DNA level for prognostic evaluation using Cox proportional hazard regression models with recursive feature elimination (RFE) and were optimized using 20 repetitions of a five-fold cross-validation scheme. RESULTS: Integrating radiomics with clinical data significantly enhanced the predictive power, yielding a C-index of 0.788 ± 0.066 to 0.848 ± 0.079 for the combined model versus 0.745 ± 0.082 to 0.766 ± 0.083 for clinical data alone (p<0.05). Multimodality radiomics combined with clinical data offered the highest performance. Despite the absence of EBV DNA, radiomics integration significantly improved survival predictions (C-index ranging from 0.770 ± 0.070 to 0.831 ± 0.083 in combined model versus 0.727 ± 0.084 to 0.734 ± 0.088 in clinical model, p<0.05). CONCLUSIONS: The combination of multimodality radiomic features from CT and MR images could offer superior predictive performance for OS, PFS, and DMFS compared to relying on conventional clinical data alone.
背景:由于鼻咽癌(NPC)的晚期诊断和经常无法检测到 EBV 病毒(EBV)DNA,其预后具有挑战性。结合放射组学特征,这些特征可以从影像学上量化肿瘤特征,可能会增强预后评估。
目的:探讨放射组学特征对 NPC 患者总生存(OS)、无进展生存(PFS)和无远处转移生存(DMFS)的预测能力。
材料与方法:对 2010 年至 2019 年期间接受放化疗的 183 例 NPC 患者进行回顾性分析。所有患者均随访至少 3 年。使用 PyRadiomics v.2.0 从预处理的带对比剂 CT 图像、MR 图像(T1W 和 T2W)以及大体肿瘤体积(GTV)轮廓中提取放射组学特征。使用组内相关系数测试和单因素 Cox 比例风险回归分析选择稳健有效的放射组学特征。然后,将其与包括年龄、性别、肿瘤分期和 EBV DNA 水平在内的临床数据相结合,使用具有递归特征消除(RFE)的 Cox 比例风险回归模型进行预后评估,并使用 20 次五折交叉验证方案进行优化。
结果:放射组学与临床数据的整合显著提高了预测能力,与临床数据相比,联合模型的 C 指数从 0.745±0.082 提高到 0.766±0.083(p<0.05),而整合后为 0.848±0.079。多模态放射组学与临床数据的结合提供了最高的性能。尽管没有 EBV DNA,放射组学的整合仍显著改善了生存预测(联合模型的 C 指数范围为 0.770±0.070 至 0.831±0.083,而临床模型的 C 指数范围为 0.727±0.084 至 0.734±0.088,p<0.05)。
结论:与仅依赖常规临床数据相比,来自 CT 和 MR 图像的多模态放射组学特征的结合可为 OS、PFS 和 DMFS 提供更好的预测性能。
Medicina (Kaunas). 2025-7-21
Front Oncol. 2025-3-25
J Imaging Inform Med. 2024-11-25
Diagnostics (Basel). 2024-4-29
Diagnostics (Basel). 2020-11-3
Insights Imaging. 2020-8-12
World J Gastroenterol. 2020-5-21