文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态放射组学在鼻咽癌肿瘤预后中的应用。

Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma.

机构信息

Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.

Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

出版信息

PLoS One. 2024 Feb 12;19(2):e0298111. doi: 10.1371/journal.pone.0298111. eCollection 2024.


DOI:10.1371/journal.pone.0298111
PMID:38346058
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10861073/
Abstract

BACKGROUND: The prognosis of nasopharyngeal carcinoma (NPC) is challenging due to late-stage identification and frequently undetectable Epstein-Barr virus (EBV) DNA. Incorporating radiomic features, which quantify tumor characteristics from imaging, may enhance prognosis assessment. PURPOSE: To investigate the predictive power of radiomic features on overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS) in NPC. MATERIALS AND METHODS: A retrospective analysis of 183 NPC patients treated with chemoradiotherapy from 2010 to 2019 was conducted. All patients were followed for at least three years. The pretreatment CT images with contrast medium, MR images (T1W and T2W), as well as gross tumor volume (GTV) contours, were used to extract radiomic features using PyRadiomics v.2.0. Robust and efficient radiomic features were chosen using the intraclass correlation test and univariate Cox proportional hazard regression analysis. They were then combined with clinical data including age, gender, tumor stage, and EBV DNA level for prognostic evaluation using Cox proportional hazard regression models with recursive feature elimination (RFE) and were optimized using 20 repetitions of a five-fold cross-validation scheme. RESULTS: Integrating radiomics with clinical data significantly enhanced the predictive power, yielding a C-index of 0.788 ± 0.066 to 0.848 ± 0.079 for the combined model versus 0.745 ± 0.082 to 0.766 ± 0.083 for clinical data alone (p<0.05). Multimodality radiomics combined with clinical data offered the highest performance. Despite the absence of EBV DNA, radiomics integration significantly improved survival predictions (C-index ranging from 0.770 ± 0.070 to 0.831 ± 0.083 in combined model versus 0.727 ± 0.084 to 0.734 ± 0.088 in clinical model, p<0.05). CONCLUSIONS: The combination of multimodality radiomic features from CT and MR images could offer superior predictive performance for OS, PFS, and DMFS compared to relying on conventional clinical data alone.

摘要

背景:由于鼻咽癌(NPC)的晚期诊断和经常无法检测到 EBV 病毒(EBV)DNA,其预后具有挑战性。结合放射组学特征,这些特征可以从影像学上量化肿瘤特征,可能会增强预后评估。

目的:探讨放射组学特征对 NPC 患者总生存(OS)、无进展生存(PFS)和无远处转移生存(DMFS)的预测能力。

材料与方法:对 2010 年至 2019 年期间接受放化疗的 183 例 NPC 患者进行回顾性分析。所有患者均随访至少 3 年。使用 PyRadiomics v.2.0 从预处理的带对比剂 CT 图像、MR 图像(T1W 和 T2W)以及大体肿瘤体积(GTV)轮廓中提取放射组学特征。使用组内相关系数测试和单因素 Cox 比例风险回归分析选择稳健有效的放射组学特征。然后,将其与包括年龄、性别、肿瘤分期和 EBV DNA 水平在内的临床数据相结合,使用具有递归特征消除(RFE)的 Cox 比例风险回归模型进行预后评估,并使用 20 次五折交叉验证方案进行优化。

结果:放射组学与临床数据的整合显著提高了预测能力,与临床数据相比,联合模型的 C 指数从 0.745±0.082 提高到 0.766±0.083(p<0.05),而整合后为 0.848±0.079。多模态放射组学与临床数据的结合提供了最高的性能。尽管没有 EBV DNA,放射组学的整合仍显著改善了生存预测(联合模型的 C 指数范围为 0.770±0.070 至 0.831±0.083,而临床模型的 C 指数范围为 0.727±0.084 至 0.734±0.088,p<0.05)。

结论:与仅依赖常规临床数据相比,来自 CT 和 MR 图像的多模态放射组学特征的结合可为 OS、PFS 和 DMFS 提供更好的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/7904fbb86da3/pone.0298111.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/63f6908307be/pone.0298111.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/10126b5638db/pone.0298111.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/7904fbb86da3/pone.0298111.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/63f6908307be/pone.0298111.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/10126b5638db/pone.0298111.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ba/10861073/7904fbb86da3/pone.0298111.g003.jpg

相似文献

[1]
Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma.

PLoS One. 2024

[2]
Prognostic values of the integrated model incorporating the volume of metastatic regional cervical lymph node and pretreatment serum Epstein-Barr virus DNA copy number in predicting distant metastasis in patients with N1 nasopharyngeal carcinoma.

Chin J Cancer. 2017-12-29

[3]
Proposed modifications and incorporation of plasma Epstein-Barr virus DNA improve the TNM staging system for Epstein-Barr virus-related nasopharyngeal carcinoma.

Cancer. 2018-10-23

[4]
Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study.

Cancer Res Treat. 2017-9-13

[5]
Integrating Postradiotherapy MRI-Detected Lymph Node Necrosis and Pre- and Posttreatment Epstein-Barr Virus-DNA for Risk Stratification in Nasopharyngeal Carcinoma.

J Magn Reson Imaging. 2023-7

[6]
The diagnostic and prognostic values of plasma Epstein-Barr virus DNA for residual cervical lymphadenopathy in nasopharyngeal carcinoma patients: a retrospective study.

Cancer Commun (Lond). 2019-3-29

[7]
Combining pretreatment plasma Epstein-Barr virus DNA level and cervical node necrosis improves prognostic stratification in patients with nasopharyngeal carcinoma: A cohort study.

Cancer Med. 2019-9-12

[8]
Utilization of the lymph node-to-primary tumor ratio of PET standardized uptake value and circulating Epstein-Barr virus DNA to predict distant metastasis in nasopharyngeal carcinoma.

Radiother Oncol. 2022-12

[9]
Prognostic Value of Plasma Epstein-Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era.

Medicine (Baltimore). 2016-2

[10]
Long-term monitoring of dynamic changes in plasma EBV DNA for improved prognosis prediction of nasopharyngeal carcinoma.

Cancer Med. 2021-2

引用本文的文献

[1]
Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma.

Medicina (Kaunas). 2025-7-21

[2]
A bibliometric analysis of nasopharyngeal carcinoma radiomics: trends and insights.

Front Oncol. 2025-3-25

[3]
Radiomics for differential diagnosis of ischemic and dilated cardiomyopathy using non-contrast-enhanced cine cardiac magnetic resonance imaging.

Radiol Med. 2025-3-10

[4]
A clinical-radiomics nomogram based on multisequence MRI for predicting the outcome of patients with advanced nasopharyngeal carcinoma receiving chemoradiotherapy.

Front Oncol. 2024-11-20

[5]
Deep Learning-Based DCE-MRI Automatic Segmentation in Predicting Lesion Nature in BI-RADS Category 4.

J Imaging Inform Med. 2024-11-25

[6]
Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis.

Diagnostics (Basel). 2024-4-29

[7]
Enhanced MRI Radiomics Based Model for Predicting Recurrence or Metastasis of Nasopharyngeal Cancer (NC) Undergoing Concurrent Chemoradiotherapy: A Retrospective Study.

Cancer Control. 2024

本文引用的文献

[1]
Predicting the need for a replan in oropharyngeal cancer: A radiomic, clinical, and dosimetric model.

Med Phys. 2024-5

[2]
Identification of CT-based non-invasive radiomic biomarkers for overall survival prediction in oral cavity squamous cell carcinoma.

Sci Rep. 2023-12-8

[3]
A Novel Multimodal Radiomics Model for Predicting Prognosis of Resected Hepatocellular Carcinoma.

Front Oncol. 2022-3-7

[4]
Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients.

Front Oncol. 2022-1-28

[5]
Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images.

Acta Oncol. 2022-1

[6]
Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach.

BJR Open. 2021-7-5

[7]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[8]
Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot Study.

Diagnostics (Basel). 2020-11-3

[9]
Radiomics in medical imaging-"how-to" guide and critical reflection.

Insights Imaging. 2020-8-12

[10]
Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.

World J Gastroenterol. 2020-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索