Suppr超能文献

基于心率变异性的机器学习模型用于急诊科疑似脓毒症患者的风险预测

Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department.

作者信息

Chiew Calvin J, Liu Nan, Tagami Takashi, Wong Ting Hway, Koh Zhi Xiong, Ong Marcus E H

机构信息

Health Services Research Unit, Division of Medicine, Singapore General Hospital.

Health Services Research Centre, Singapore Health Services.

出版信息

Medicine (Baltimore). 2019 Feb;98(6):e14197. doi: 10.1097/MD.0000000000014197.

Abstract

Early identification of high-risk septic patients in the emergency department (ED) may guide appropriate management and disposition, thereby improving outcomes. We compared the performance of machine learning models against conventional risk stratification tools, namely the Quick Sequential Organ Failure Assessment (qSOFA), National Early Warning Score (NEWS), Modified Early Warning Score (MEWS), and our previously described Singapore ED Sepsis (SEDS) model, in the prediction of 30-day in-hospital mortality (IHM) among suspected sepsis patients in the ED.Adult patients who presented to Singapore General Hospital (SGH) ED between September 2014 and April 2016, and who met ≥2 of the 4 Systemic Inflammatory Response Syndrome (SIRS) criteria were included. Patient demographics, vital signs and heart rate variability (HRV) measures obtained at triage were used as predictors. Baseline models were created using qSOFA, NEWS, MEWS, and SEDS scores. Candidate models were trained using k-nearest neighbors, random forest, adaptive boosting, gradient boosting and support vector machine. Models were evaluated on F1 score and area under the precision-recall curve (AUPRC).A total of 214 patients were included, of whom 40 (18.7%) met the outcome. Gradient boosting was the best model with a F1 score of 0.50 and AUPRC of 0.35, and performed better than all the baseline comparators (SEDS, F1 0.40, AUPRC 0.22; qSOFA, F1 0.32, AUPRC 0.21; NEWS, F1 0.38, AUPRC 0.28; MEWS, F1 0.30, AUPRC 0.25).A machine learning model can be used to improve prediction of 30-day IHM among suspected sepsis patients in the ED compared to traditional risk stratification tools.

摘要

在急诊科(ED)早期识别高危脓毒症患者可指导适当的管理和处置,从而改善治疗结果。我们比较了机器学习模型与传统风险分层工具(即快速序贯器官衰竭评估(qSOFA)、国家早期预警评分(NEWS)、改良早期预警评分(MEWS)以及我们之前描述的新加坡急诊科脓毒症(SEDS)模型)在预测急诊科疑似脓毒症患者30天院内死亡率(IHM)方面的表现。纳入了2014年9月至2016年4月期间在新加坡总医院(SGH)急诊科就诊且符合4项全身炎症反应综合征(SIRS)标准中≥2项的成年患者。分诊时获得的患者人口统计学信息、生命体征和心率变异性(HRV)测量值用作预测指标。使用qSOFA、NEWS、MEWS和SEDS评分创建基线模型。候选模型使用k近邻、随机森林、自适应增强、梯度增强和支持向量机进行训练。根据F1分数和精确召回率曲线下面积(AUPRC)对模型进行评估。共纳入214例患者,其中40例(18.7%)达到研究结局。梯度增强是最佳模型,F1分数为0.50,AUPRC为0.35,其表现优于所有基线比较模型(SEDS,F1为0.40,AUPRC为0.22;qSOFA,F1为0.32,AUPRC为0.21;NEWS,F1为0.38,AUPRC为0.28;MEWS,F1为0.30,AUPRC为0.25)。与传统风险分层工具相比,机器学习模型可用于改善急诊科疑似脓毒症患者30天IHM的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验