Schäfer Christian, Ruggenthaler Michael, Appel Heiko, Rubio Angel
Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany;
The Center for Free-Electron Laser Science, 22761 Hamburg, Germany.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4883-4892. doi: 10.1073/pnas.1814178116. Epub 2019 Feb 7.
Energy transfer in terms of excitation or charge is one of the most basic processes in nature, and understanding and controlling them is one of the major challenges of modern quantum chemistry. In this work, we highlight that these processes as well as other chemical properties can be drastically altered by modifying the vacuum fluctuations of the electromagnetic field in a cavity. By using a real-space formulation from first principles that keeps all of the electronic degrees of freedom in the model explicit and simulates changes in the environment by an effective photon mode, we can easily connect to well-known quantum-chemical results such as Dexter charge-transfer and Förster excitation-transfer reactions, taking into account the often-disregarded Coulomb and self-polarization interaction. We find that the photonic degrees of freedom introduce extra electron-electron correlations over large distances and that the coupling to the cavity can drastically alter the characteristic charge-transfer behavior and even selectively improve the efficiency. For excitation transfer, we find that the cavity renders the transfer more efficient, essentially distance-independent, and further different configurations of highest efficiency depending on the coherence times. For strong decoherence (short coherence times), the cavity frequency should be in between the isolated excitations of the donor and acceptor, while for weak decoherence (long coherence times), the cavity should enhance a mode that is close to resonance with either donor or acceptor. Our results highlight that changing the photonic environment can redefine chemical processes, rendering polaritonic chemistry a promising approach toward the control of chemical reactions.
以激发或电荷形式进行的能量转移是自然界中最基本的过程之一,理解并控制这些过程是现代量子化学的主要挑战之一。在这项工作中,我们强调,通过改变腔体内电磁场的真空涨落,这些过程以及其他化学性质会发生显著改变。通过使用一种基于第一性原理的实空间公式,该公式使模型中的所有电子自由度都明确显示,并通过一个有效的光子模式模拟环境变化,我们能够轻松地与诸如德克斯特电荷转移和福斯特激发转移反应等著名的量子化学结果相联系,同时考虑到常常被忽视的库仑相互作用和自极化相互作用。我们发现,光子自由度在大距离上引入了额外的电子 - 电子关联,并且与腔体的耦合能够显著改变特征性的电荷转移行为,甚至选择性地提高效率。对于激发转移,我们发现腔体使转移更高效,基本上与距离无关,并且根据相干时间存在不同的最高效率配置。对于强退相干(短相干时间),腔体频率应处于供体和受体的孤立激发之间,而对于弱退相干(长相干时间),腔体应增强与供体或受体接近共振的模式。我们的结果突出表明,改变光子环境可以重新定义化学过程,使极化子化学成为控制化学反应的一种有前景的方法。