Research Center, Centre Hospitalier Universitaire de Montréal, Université de Montréal, Montréal, Québec, H2X 0A9, Canada.
Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada.
Hum Brain Mapp. 2018 Jan;39(1):7-23. doi: 10.1002/hbm.23849. Epub 2017 Oct 23.
Continuous brain imaging techniques can be beneficial for the monitoring of neurological pathologies (such as epilepsy or stroke) and neuroimaging protocols involving movement. Among existing ones, functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have the advantage of being noninvasive, nonobstructive, inexpensive, yield portable solutions, and offer complementary monitoring of electrical and local hemodynamic activities. This article presents a novel system with 128 fNIRS channels and 32 EEG channels with the potential to cover a larger fraction of the adult superficial cortex than earlier works, is integrated with 32 EEG channels, is light and battery-powered to improve portability, and can transmit data wirelessly to an interface for real-time display of electrical and hemodynamic activities. A novel fNIRS-EEG stretchable cap, two analog channels for auxiliary data (e.g., electrocardiogram), eight digital triggers for event-related protocols and an internal accelerometer for movement artifacts removal contribute to improve data acquisition quality. The system can run continuously for 24 h. Following instrumentation validation and reliability on a solid phantom, performance was evaluated on (1) 12 healthy participants during either a visual (checkerboard) task at rest or while pedalling on a stationary bicycle or a cognitive (language) task and (2) 4 patients admitted either to the epilepsy (n = 3) or stroke (n = 1) units. Data analysis confirmed expected hemodynamic variations during validation recordings and useful clinical information during in-hospital testing. To the best of our knowledge, this is the first demonstration of a wearable wireless multichannel fNIRS-EEG monitoring system in patients with neurological conditions. Hum Brain Mapp 39:7-23, 2018. © 2017 Wiley Periodicals, Inc.
连续脑成像技术可用于监测神经病理学(如癫痫或中风)和涉及运动的神经影像学方案。在现有的技术中,功能近红外光谱(fNIRS)和脑电图(EEG)具有非侵入性、非阻塞性、价格低廉、提供便携式解决方案以及对电活动和局部血液动力学活动进行互补监测的优势。本文提出了一种具有 128 个 fNIRS 通道和 32 个 EEG 通道的新型系统,与早期的工作相比,该系统有可能覆盖更大比例的成人表浅皮层,与 32 个 EEG 通道集成,轻便且由电池供电,以提高便携性,并能无线传输数据到接口,实时显示电和血液动力学活动。一种新型的 fNIRS-EEG 可拉伸帽,两个用于辅助数据(例如心电图)的模拟通道,八个用于事件相关协议的数字触发器和一个内部加速度计用于去除运动伪影,有助于提高数据采集质量。该系统可以连续运行 24 小时。在固体模型上进行了仪器验证和可靠性测试后,在(1)12 名健康参与者中进行了评估,这些参与者在休息时进行视觉(棋盘)任务或在固定自行车上踩踏时或进行认知(语言)任务,(2)4 名患者中进行了评估,这些患者分别被收入癫痫(n = 3)或中风(n = 1)病房。数据分析证实了验证记录期间预期的血液动力学变化以及住院测试期间有用的临床信息。据我们所知,这是首次在神经状况患者中展示可穿戴无线多通道 fNIRS-EEG 监测系统。《人类大脑图谱》39:7-23,2018. © 2017 Wiley Periodicals, Inc.