Brandenburg Jan Gerit, Grimme Stefan
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4-6, 53115 Bonn, Germany.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Aug 1;72(Pt 4):502-13. doi: 10.1107/S2052520616007885.
We analyze the energy landscape of the sixth crystal structure prediction blind test targets with various first principles and semi-empirical quantum chemical methodologies. A new benchmark set of 59 crystal structures (termed POLY59) for testing quantum chemical methods based on the blind test target crystals is presented. We focus on different means to include London dispersion interactions within the density functional theory (DFT) framework. We show the impact of pairwise dispersion corrections like the semi-empirical D2 scheme, the Tkatchenko-Scheffler (TS) method, and the density-dependent dispersion correction dDsC. Recent methodological progress includes higher-order contributions in both the many-body and multipole expansions. We use the D3 correction with Axilrod-Teller-Muto type three-body contribution, the TS based many-body dispersion (MBD), and the nonlocal van der Waals density functional (vdW-DF2). The density functionals with D3 and MBD correction provide an energy ranking of the blind test polymorphs in excellent agreement with the experimentally found structures. As a computationally less demanding method, we test our recently presented minimal basis Hartree-Fock method (HF-3c) and a density functional tight-binding Hamiltonian (DFTB). Considering the speed-up of three to four orders of magnitudes, the energy ranking provided by the low-cost methods is very reasonable. We compare the computed geometries with the corresponding X-ray data where TPSS-D3 performs best. The importance of zero-point vibrational energy and thermal effects on crystal densities is highlighted.
我们使用各种第一性原理和半经验量子化学方法分析了第六届晶体结构预测盲测目标的能量景观。基于盲测目标晶体,提出了一套用于测试量子化学方法的包含59个晶体结构的新基准集(称为POLY59)。我们重点关注在密度泛函理论(DFT)框架内纳入伦敦色散相互作用的不同方法。我们展示了诸如半经验D2方案、Tkatchenko-Scheffler(TS)方法和密度依赖色散校正dDsC等成对色散校正的影响。最近的方法进展包括在多体和多极展开中的高阶贡献。我们使用带有Axilrod-Teller-Muto型三体贡献的D3校正、基于TS的多体色散(MBD)和非局部范德华密度泛函(vdW-DF2)。具有D3和MBD校正的密度泛函给出的盲测多晶型物的能量排序与实验发现的结构非常吻合。作为一种计算要求较低的方法,我们测试了我们最近提出的最小基哈特里-福克方法(HF-3c)和一种密度泛函紧束缚哈密顿量(DFTB)。考虑到速度提高了三到四个数量级,低成本方法提供的能量排序非常合理。我们将计算得到的几何结构与相应的X射线数据进行比较,其中TPSS-D3表现最佳。强调了零点振动能和热效应对晶体密度的重要性。