Suppr超能文献

快速采样 fMRI 数据分析。

On the analysis of rapidly sampled fMRI data.

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA.

出版信息

Neuroimage. 2019 Mar;188:807-820. doi: 10.1016/j.neuroimage.2019.02.008. Epub 2019 Feb 5.

Abstract

Recent advances in parallel imaging and simultaneous multi-slice techniques have permitted whole-brain fMRI acquisitions at sub-second sampling intervals, without significantly sacrificing the spatial coverage and resolution. Apart from probing brain function at finer temporal scales, faster sampling rates may potentially lead to enhanced functional sensitivity, owing possibly to both cleaner neural representations (due to less aliased physiological noise) and additional statistical benefits (due to more degrees of freedom for a fixed scan duration). Accompanying these intriguing aspects of fast acquisitions, however, confusion has also arisen regarding (1) how to preprocess/analyze these fast fMRI data, and (2) what exactly is the extent of benefits with fast acquisitions, i.e., how fast is fast enough for a specific research aim? The first question is motivated by the altered spectral distribution and noise characteristics at short sampling intervals, while the second question seeks to reconcile the complicated trade-offs between the functional contrast-to-noise ratio and the effective degrees of freedom. Although there have been recent efforts to empirically approach different aspects of these two questions, in this work we discuss, from a theoretical perspective accompanied by some illustrative, proof-of-concept experimental in vivo human fMRI data, a few considerations that are rarely mentioned, yet are important for both preprocessing and optimizing statistical inferences for studies that employ acquisitions with sub-second sampling intervals. Several summary recommendations include concerns regarding advisability of relying on low-pass filtering to de-noise physiological contributions, employment of statistical models with sufficient complexity to account for the substantially increased serial correlation, and cautions regarding using rapid sampling to enhance functional sensitivity given that different analysis models may associate with distinct trade-offs between contrast-to-noise ratios and the effective degrees of freedom. As an example, we demonstrate that as TR shortens, the intrinsic differences in how noise is accommodated in general linear models and Pearson correlation analyses (assuming Gaussian distributed stochastic signals and noise) can result in quite different outcomes, either gaining or losing statistical power.

摘要

近年来,并行成像和同时多层技术的进步使得在亚秒级采样间隔下进行全脑 fMRI 采集成为可能,而不会显著牺牲空间覆盖范围和分辨率。除了在更精细的时间尺度上探测大脑功能外,更快的采样率可能会由于更干净的神经表示(由于较少的混叠生理噪声)和额外的统计优势(由于在固定扫描持续时间内有更多的自由度)而导致更高的功能灵敏度。然而,伴随着这些快速采集的有趣方面,也出现了关于(1)如何预处理/分析这些快速 fMRI 数据,以及(2)快速采集的益处究竟有多大,即对于特定的研究目的,多快才算足够快的困惑。第一个问题是由短采样间隔下的改变的光谱分布和噪声特性引起的,而第二个问题则试图协调功能对比噪声比和有效自由度之间的复杂权衡。尽管最近已经有一些努力从经验上探讨这两个问题的不同方面,但在这项工作中,我们从理论角度讨论了一些很少被提及但对于使用亚秒级采样间隔采集进行预处理和优化统计推断都很重要的考虑因素,同时还结合了一些现场人类 fMRI 数据的概念验证实验。一些总结建议包括关注依赖低通滤波去除生理贡献的噪声是否明智、使用具有足够复杂度的统计模型来解释显著增加的序列相关性、以及在使用快速采样来增强功能灵敏度时要小心,因为不同的分析模型可能与对比度噪声比和有效自由度之间的不同权衡相关联。例如,我们证明了当 TR 缩短时,一般线性模型和 Pearson 相关分析(假设高斯分布的随机信号和噪声)中如何适应噪声的内在差异可能会导致截然不同的结果,要么获得要么失去统计能力。

相似文献

1
On the analysis of rapidly sampled fMRI data.快速采样 fMRI 数据分析。
Neuroimage. 2019 Mar;188:807-820. doi: 10.1016/j.neuroimage.2019.02.008. Epub 2019 Feb 5.
2
Serial correlations in single-subject fMRI with sub-second TR.具有亚秒 TR 的单被试 fMRI 的序列相关。
Neuroimage. 2018 Feb 1;166:152-166. doi: 10.1016/j.neuroimage.2017.10.043. Epub 2017 Oct 21.
3
Model-based physiological noise removal in fast fMRI.基于模型的快速 fMRI 中的生理噪声去除。
Neuroimage. 2020 Jan 15;205:116231. doi: 10.1016/j.neuroimage.2019.116231. Epub 2019 Oct 4.

引用本文的文献

本文引用的文献

1
Correction of respiratory artifacts in MRI head motion estimates.校正 MRI 头部运动估计中的呼吸伪影。
Neuroimage. 2020 Mar;208:116400. doi: 10.1016/j.neuroimage.2019.116400. Epub 2019 Nov 25.
8
Serial correlations in single-subject fMRI with sub-second TR.具有亚秒 TR 的单被试 fMRI 的序列相关。
Neuroimage. 2018 Feb 1;166:152-166. doi: 10.1016/j.neuroimage.2017.10.043. Epub 2017 Oct 21.
9
Analysis strategies for high-resolution UHF-fMRI data.高分辨率 UHF-fMRI 数据的分析策略。
Neuroimage. 2018 Mar;168:296-320. doi: 10.1016/j.neuroimage.2017.04.053. Epub 2017 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验