Suppr超能文献

基于定量放射组学数据的机器学习技术预测胶质母细胞瘤 IDH1 突变状态。

Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data.

机构信息

Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

World Neurosurg. 2019 May;125:e688-e696. doi: 10.1016/j.wneu.2019.01.157. Epub 2019 Feb 5.

Abstract

OBJECTIVE

Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment strategy. We aimed to predict IDH1 mutation status using quantitative radiomic data in patients with GBM.

METHODS

Between May 2010 and June 2015, we retrospectively identified 88 patients with newly diagnosed GBM. After semiautomatic segmentation of the lesions, we extracted 31 features from preoperative multiparametric magnetic resonance images. We also determined IDH1 mutation status using targeted sequencing and immunohistochemistry. A training cohort (n = 88) was used to train machine learning-based classifiers, with internal validation. The machine-learning technique was then validated in an external dataset of 35 patients with GBM.

RESULTS

We detected the IDH1 mutation in 12 out of 88 GBMs. Multiparametric radiomic profiles revealed that the IDH1 mutation was associated with a smaller enhancing area volume and a larger necrotic area volume. Using the machine learning-based classification algorithms, we identified 70.3%-87.3% of prediction rate of IDH1 mutation status and found 66.3%-83.4% accuracy in the external validation set.

CONCLUSIONS

We demonstrate that machine learning algorithms can predict IDH1 mutation status in GBM using preoperative multiparametric magnetic resonance images.

摘要

目的

异柠檬酸脱氢酶 1(IDH1)突变状态是胶质母细胞瘤(GBM)的独立预后良好因素,通常通过测序或免疫组织化学来确定。通过非侵入性方法准确预测 IDH1 突变状态有助于制定适当的治疗策略。我们旨在使用 GBM 患者的定量放射组学数据来预测 IDH1 突变状态。

方法

在 2010 年 5 月至 2015 年 6 月期间,我们回顾性地确定了 88 例新诊断的 GBM 患者。在对病变进行半自动分割后,我们从术前多参数磁共振图像中提取了 31 个特征。我们还使用靶向测序和免疫组织化学确定了 IDH1 突变状态。使用机器学习为基础的分类器对训练队列(n=88)进行训练,并进行内部验证。然后在包含 35 例 GBM 患者的外部数据集上验证机器学习技术。

结果

我们在 88 例 GBM 中检测到 12 例 IDH1 突变。多参数放射组学分析显示,IDH1 突变与较小的增强区域体积和较大的坏死区域体积相关。使用基于机器学习的分类算法,我们发现 IDH1 突变状态的预测率为 70.3%-87.3%,在外部验证集的准确率为 66.3%-83.4%。

结论

我们证明了机器学习算法可以使用术前多参数磁共振图像来预测 GBM 中的 IDH1 突变状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验