文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电子占据率作为基于钙钛矿氧化物过氧化物模拟酶的催化活性的有效描述符。

e occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics.

机构信息

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210093, China.

College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.

出版信息

Nat Commun. 2019 Feb 11;10(1):704. doi: 10.1038/s41467-019-08657-5.


DOI:10.1038/s41467-019-08657-5
PMID:30741958
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6370761/
Abstract

A peroxidase catalyzes the oxidation of a substrate with a peroxide. The search for peroxidase-like and other enzyme-like nanomaterials (called nanozymes) mainly relies on trial-and-error strategies, due to the lack of predictive descriptors. To fill this gap, here we investigate the occupancy of e orbitals as a possible descriptor for the peroxidase-like activity of transition metal oxide (including perovskite oxide) nanozymes. Both experimental measurements and density functional theory calculations reveal a volcano relationship between the e occupancy and nanozymes' activity, with the highest peroxidase-like activities corresponding to e occupancies of ~1.2. LaNiO, optimized based on the e occupancy, exhibits an activity one to two orders of magnitude higher than that of other representative peroxidase-like nanozymes. This study shows that the e occupancy is a predictive descriptor to guide the design of peroxidase-like nanozymes; in addition, it provides detailed insight into the catalytic mechanism of peroxidase-like nanozymes.

摘要

过氧化物酶催化过氧化物氧化底物。由于缺乏预测性描述符,过氧化物酶样和其他酶样纳米材料(称为纳米酶)的寻找主要依赖于反复试验的策略。为了填补这一空白,我们在这里研究了 e 轨道的占据情况,作为过渡金属氧化物(包括钙钛矿氧化物)纳米酶过氧化物酶样活性的可能描述符。实验测量和密度泛函理论计算都揭示了 e 占据与纳米酶活性之间的火山关系,e 占据约为 1.2 时对应着最高的过氧化物酶样活性。基于 e 占据优化的 LaNiO 表现出比其他代表性过氧化物酶样纳米酶高一个或两个数量级的活性。这项研究表明,e 占据是一种预测性描述符,可以指导过氧化物酶样纳米酶的设计;此外,它还提供了对过氧化物酶样纳米酶催化机制的详细见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/61fb0db47765/41467_2019_8657_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/8969381e6e77/41467_2019_8657_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/2a75f79b3f93/41467_2019_8657_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/1b269eccc14c/41467_2019_8657_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/c1ad433e532a/41467_2019_8657_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/61fb0db47765/41467_2019_8657_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/8969381e6e77/41467_2019_8657_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/2a75f79b3f93/41467_2019_8657_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/1b269eccc14c/41467_2019_8657_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/c1ad433e532a/41467_2019_8657_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/6370761/61fb0db47765/41467_2019_8657_Fig5_HTML.jpg

相似文献

[1]
e occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics.

Nat Commun. 2019-2-11

[2]
Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO Perovskite and Its Application for Biomedical Assays.

Theranostics. 2017-6-1

[3]
Occupancy as a Predictive Descriptor for Spinel Oxide Nanozymes.

Nano Lett. 2022-12-28

[4]
Exsolution of Noble-Metal Nanoparticles on Perovskites as Enhanced Peroxidase Mimics for Bioanalysis.

Anal Chem. 2021-4-13

[5]
Plasma-Assisted Controllable Doping of Nitrogen into MoS Nanosheets as Efficient Nanozymes with Enhanced Peroxidase-Like Catalysis Activity.

ACS Appl Mater Interfaces. 2020-4-15

[6]
Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics.

Dalton Trans. 2019-2-5

[7]
Determination of the Maximum Velocity of a Peroxidase-like Nanozyme.

Anal Chem. 2023-7-4

[8]
Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes.

Nat Protoc. 2018-7

[9]
Deciphering the Catalytic Mechanism of Peroxidase-like Activity of Iron Sulfide Nanozymes.

ACS Appl Mater Interfaces. 2024-6-19

[10]
2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications.

Anal Bioanal Chem. 2022-4

引用本文的文献

[1]
Nanozymes expanding the boundaries of biocatalysis.

Nat Commun. 2025-7-24

[2]
A programmable platelet theranostic platform for adaptive multi-stage delivery and synergistic immunotherapy in atherosclerosis.

Nat Commun. 2025-7-11

[3]
Electronic structure modulation of ultrathin PtRuMoCoNi high-entropy alloy nanowires for boosting peroxidase-like activity and sensitive colorimetric determination of isoniazid and hydrazine.

Mikrochim Acta. 2025-1-15

[4]
Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun. 2024-12-30

[5]
Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes.

Nat Commun. 2024-9-27

[6]
Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis.

Sci Adv. 2024-9-27

[7]
Nonmetal Doping Modulates Fe Single-Atom Catalysts for Enhancement in Peroxidase Mimicking via Symmetry Disruption, Distortion, and Charge Transfer.

ACS Omega. 2024-7-29

[8]
Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme.

Nat Commun. 2024-7-26

[9]
Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme.

Chem Sci. 2024-6-10

[10]
A phosphatase-like nanomaterial promotes autophagy and reprograms macrophages for cancer immunotherapy.

Chem Sci. 2024-6-17

本文引用的文献

[1]
Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction.

Chem Rev. 2018-2-6

[2]
Tumor-selective catalytic nanomedicine by nanocatalyst delivery.

Nat Commun. 2017-8-25

[3]
Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO Perovskite and Its Application for Biomedical Assays.

Theranostics. 2017-6-1

[4]
Ceria-Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment.

Angew Chem Int Ed Engl. 2017-7-5

[5]
Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity.

J Am Chem Soc. 2017-4-5

[6]
A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution.

Nat Commun. 2017-2-27

[7]
Combining theory and experiment in electrocatalysis: Insights into materials design.

Science. 2017-1-13

[8]
A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.

Science. 2016-9-2

[9]
Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition.

Nat Commun. 2016-5-17

[10]
Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst.

J Am Chem Soc. 2016-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索