Melendez-Rodriguez Beatriz, Figueroa-Lopez Kelly J, Bernardos Andrea, Martínez-Máñez Ramón, Cabedo Luis, Torres-Giner Sergio, Lagaron Jose M
Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), camí de Vera s/n, 46022, Valencia, Spain.
Nanomaterials (Basel). 2019 Feb 8;9(2):227. doi: 10.3390/nano9020227.
The main goal of this study was to develop poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) films with long-term antimicrobial capacity of interest in food packaging applications. To this end, eugenol was first highly efficiently encapsulated at 50 wt.-% in the pores of mesoporous silica nanoparticles by vapor adsorption. The eugenol-containing nanoparticles were then loaded in the 2.5⁻20 wt.-% range into PHBV by electrospinning and the resultant electrospun composite fibers were annealed at 155 °C to produce continuous films. The characterization showed that the PHBV films filled with mesoporous silica nanoparticles containing eugenol present sufficient thermal resistance and enhanced mechanical strength and barrier performance to water vapor and limonene. The antimicrobial activity of the films was also evaluated against foodborne bacteria for 15 days in open closed conditions in order to simulate real packaging conditions. The electrospun PHBV films with loadings above 10 wt.-% of mesoporous silica nanoparticles containing eugenol successfully inhibited the bacterial growth, whereas the active films stored in hermetically closed systems increased their antimicrobial activity after 15 days due to the volatile portion accumulated in the system's headspace and the sustained release capacity of the films. The resultant biopolymer films are, therefore, potential candidates to be applied in active food packaging applications to provide shelf life extension and food safety.
本研究的主要目标是开发具有长期抗菌能力的聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)薄膜,用于食品包装应用。为此,首先通过蒸汽吸附将丁香酚以50 wt.-%的比例高效封装在介孔二氧化硅纳米颗粒的孔中。然后,通过静电纺丝将含丁香酚的纳米颗粒以2.5⁻20 wt.-%的比例负载到PHBV中,并将所得的静电纺复合纤维在155°C下退火以制备连续薄膜。表征结果表明,填充有含丁香酚介孔二氧化硅纳米颗粒的PHBV薄膜具有足够的耐热性,并且其机械强度以及对水蒸气和柠檬烯的阻隔性能均得到增强。为了模拟实际包装条件,还在开放和封闭条件下对薄膜针对食源细菌的抗菌活性进行了15天的评估。含丁香酚介孔二氧化硅纳米颗粒负载量高于10 wt.-%的静电纺PHBV薄膜成功抑制了细菌生长,而储存在密封系统中的活性薄膜在15天后由于系统顶部空间中积累的挥发性成分和薄膜的缓释能力而提高了其抗菌活性。因此,所得的生物聚合物薄膜是应用于活性食品包装应用以延长保质期和确保食品安全的潜在候选材料。