Suppr超能文献

呼吸肺芯片中肺泡肺上皮细胞伤口愈合受损

Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip.

作者信息

Felder Marcel, Trueeb Bettina, Stucki Andreas Oliver, Borcard Sarah, Stucki Janick Daniel, Schnyder Bruno, Geiser Thomas, Guenat Olivier Thierry

机构信息

ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland.

HES-SO, Institute of Life Technologies, Sion, Switzerland.

出版信息

Front Bioeng Biotechnol. 2019 Jan 22;7:3. doi: 10.3389/fbioe.2019.00003. eCollection 2019.

Abstract

The lung alveolar region experiences remodeling during several acute and chronic lung diseases, as for instance idiopathic pulmonary fibrosis (IPF), a fatal disease, whose onset is correlated with repetitive microinjuries to the lung alveolar epithelium and abnormal alveolar wound repair. Although a high degree of mechanical stress (>20% linear strain) is thought to potentially induce IPF, the effect of lower, physiological levels of strain (5-12% linear strain) on IPF pathophysiology remains unknown. In this study, we examined the influence of mechanical strain on alveolar epithelial wound healing. For this purpose, we adopted the "organ-on-a-chip" approach, which provides the possibility of reproducing unique aspects of the cellular microenvironment, in particular its dynamic nature. Our results provide the first demonstration that a wound healing assay can be performed on a breathing lung-on-a-chip equipped with an ultra-thin elastic membrane. We cultured lung alveolar epithelial cells to confluence, the cells were starved for 24 h, and then wounded by scratching with a standard micropipette tip. Wound healing was assessed after 24 h under different concentrations of recombinant human hepatic growth factor (rhHGF) and the application of cyclic mechanical stretch. Physiological cyclic mechanical stretch (10% linear strain, 0.2 Hz) significantly impaired the alveolar epithelial wound healing process relative to culture in static conditions. This impairment could be partially ameliorated by administration of rhHGF. This proof-of-concept study provides a way to study of more complex interactions, such as a co-culture with fibroblasts, endothelial cells, or immune cells, as well as the study of wound healing at an air-liquid interface.

摘要

在多种急性和慢性肺部疾病中,肺肺泡区域会发生重塑,例如特发性肺纤维化(IPF),这是一种致命疾病,其发病与肺泡上皮的反复微损伤和异常的肺泡伤口修复有关。尽管人们认为高度的机械应力(>20%线性应变)可能诱发IPF,但较低的生理应变水平(5-12%线性应变)对IPF病理生理学的影响仍不清楚。在本研究中,我们研究了机械应变对肺泡上皮伤口愈合的影响。为此,我们采用了“芯片上的器官”方法,该方法能够再现细胞微环境的独特方面,特别是其动态特性。我们的结果首次证明,可以在配备超薄弹性膜的呼吸型芯片肺上进行伤口愈合试验。我们将肺泡上皮细胞培养至汇合,使细胞饥饿24小时,然后用标准微量移液器吸头刮擦造成伤口。在不同浓度的重组人肝细胞生长因子(rhHGF)和施加周期性机械拉伸的情况下,24小时后评估伤口愈合情况。相对于静态培养条件,生理周期性机械拉伸(10%线性应变,0.2赫兹)显著损害了肺泡上皮伤口愈合过程。给予rhHGF可部分改善这种损害。这项概念验证研究提供了一种方法,用于研究更复杂的相互作用,例如与成纤维细胞、内皮细胞或免疫细胞的共培养,以及在气液界面处的伤口愈合研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c91/6360510/2c9209ac1541/fbioe-07-00003-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验