Suppr超能文献

相似文献

1
PairedFB: a full hierarchical Bayesian model for paired RNA-seq data with heterogeneous treatment effects.
Bioinformatics. 2019 Mar 1;35(5):787-797. doi: 10.1093/bioinformatics/bty731.
2
MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments.
BMC Bioinformatics. 2020 Aug 28;21(1):375. doi: 10.1186/s12859-020-03715-y.
3
BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
BMC Bioinformatics. 2014;15 Suppl 9(Suppl 9):S6. doi: 10.1186/1471-2105-15-S9-S6. Epub 2014 Sep 10.
4
A Bayesian model to identify multiple expression patterns with simultaneous FDR control for a multi-factor RNA-seq experiment.
Stat Appl Genet Mol Biol. 2023 Apr 24;22(1). doi: 10.1515/sagmb-2022-0025. eCollection 2023 Jan 1.
5
Interpretable factor models of single-cell RNA-seq via variational autoencoders.
Bioinformatics. 2020 Jun 1;36(11):3418-3421. doi: 10.1093/bioinformatics/btaa169.
6
scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
Bioinformatics. 2020 Feb 1;36(3):789-797. doi: 10.1093/bioinformatics/btz627.
7
2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
Bioinformatics. 2020 Jun 1;36(11):3588-3589. doi: 10.1093/bioinformatics/btaa148.
9
DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates.
Bioinformatics. 2017 Oct 1;33(19):3018-3027. doi: 10.1093/bioinformatics/btx357.
10
ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
Bioinformatics. 2020 May 1;36(10):3124-3130. doi: 10.1093/bioinformatics/btaa098.

引用本文的文献

1
lmerSeq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models.
BMC Bioinformatics. 2022 Nov 16;23(1):489. doi: 10.1186/s12859-022-05019-9.
2
A comparison of methods for multiple degree of freedom testing in repeated measures RNA-sequencing experiments.
BMC Med Res Methodol. 2022 May 28;22(1):153. doi: 10.1186/s12874-022-01615-8.
3
MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments.
BMC Bioinformatics. 2020 Aug 28;21(1):375. doi: 10.1186/s12859-020-03715-y.

本文引用的文献

1
A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples.
PLoS One. 2017 Jan 25;12(1):e0170632. doi: 10.1371/journal.pone.0170632. eCollection 2017.
2
A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data.
J Agric Biol Environ Stat. 2015 Dec;20(4):555-576. doi: 10.1007/s13253-015-0227-0. Epub 2015 Oct 7.
3
What if we ignore the random effects when analyzing RNA-seq data in a multifactor experiment.
Stat Appl Genet Mol Biol. 2016 Apr;15(2):87-105. doi: 10.1515/sagmb-2015-0011.
5
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
6
Evaluation of read count based RNAseq analysis methods.
BMC Genomics. 2013;14 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2164-14-S8-S2. Epub 2013 Dec 9.
7
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29.
8
Empirical Bayesian analysis of paired high-throughput sequencing data with a beta-binomial distribution.
BMC Bioinformatics. 2013 Apr 23;14:135. doi: 10.1186/1471-2105-14-135.
9
Differential expression analysis for paired RNA-Seq data.
BMC Bioinformatics. 2013 Mar 27;14:110. doi: 10.1186/1471-2105-14-110.
10
A comparison of methods for differential expression analysis of RNA-seq data.
BMC Bioinformatics. 2013 Mar 9;14:91. doi: 10.1186/1471-2105-14-91.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验