Suppr超能文献

通过整合多个网络预测人类微小RNA的基因本体功能

Predicting Gene Ontology Function of Human MicroRNAs by Integrating Multiple Networks.

作者信息

Deng Lei, Wang Jiacheng, Zhang Jingpu

机构信息

School of Software, Central South University, Changsha, China.

School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, China.

出版信息

Front Genet. 2019 Jan 29;10:3. doi: 10.3389/fgene.2019.00003. eCollection 2019.

Abstract

MicroRNAs (miRNAs) have been demonstrated to play significant biological roles in many human biological processes. Inferring the functions of miRNAs is an important strategy for understanding disease pathogenesis at the molecular level. In this paper, we propose an integrated model, PmiRGO, to infer the gene ontology (GO) functions of miRNAs by integrating multiple data sources, including the expression profiles of miRNAs, miRNA-target interactions, and protein-protein interactions (PPI). PmiRGO starts by building a global network consisting of three networks. Then, it employs DeepWalk to learn latent representations as network features of the global heterogeneous network. Finally, the SVM-based models are applied to label the GO terms of miRNAs. The experimental results show that PmiRGO has a significantly better performance than existing state-of-the-art methods in terms of . A case study further demonstrates the feasibility of PmiRGO to annotate the potential functions of miRNAs.

摘要

微小RNA(miRNA)已被证明在许多人类生物学过程中发挥着重要的生物学作用。推断miRNA的功能是在分子水平上理解疾病发病机制的重要策略。在本文中,我们提出了一种集成模型PmiRGO,通过整合多个数据源来推断miRNA的基因本体(GO)功能,这些数据源包括miRNA的表达谱、miRNA-靶标相互作用和蛋白质-蛋白质相互作用(PPI)。PmiRGO首先构建一个由三个网络组成的全局网络。然后,它使用深度游走(DeepWalk)来学习潜在表示作为全局异质网络的网络特征。最后,基于支持向量机(SVM)的模型被应用于标记miRNA的GO术语。实验结果表明,PmiRGO在 方面的性能明显优于现有的最先进方法。一个案例研究进一步证明了PmiRGO注释miRNA潜在功能的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abe/6361788/f4bdeb2ee980/fgene-10-00003-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验