Chen Yuanqiong, Liu Zhijie, Meng Yujia, Li Jianfeng
School of Computer Science and Engineering, Central South University, Changsha 410000, China.
School of Computer Science and Engineering, Jishou University, Zhangjiajie 427000, China.
Biomimetics (Basel). 2024 Oct 18;9(10):637. doi: 10.3390/biomimetics9100637.
Glaucoma represents a significant global contributor to blindness. Accurately segmenting the optic disc (OD) and optic cup (OC) to obtain precise CDR is essential for effective screening. However, existing convolutional neural network (CNN)-based segmentation techniques are often limited by high computational demands and long inference times. This paper proposes an efficient end-to-end method for OD and OC segmentation, utilizing the lightweight MobileNetv3 network as the core feature-extraction module. Our approach combines boundary branches with adversarial learning, to achieve multi-label segmentation of the OD and OC. We validated our proposed approach across three public available datasets: Drishti-GS, RIM-ONE-r3, and REFUGE. The outcomes reveal that the Dice coefficients for the segmentation of OD and OC within these datasets are 0.974/0.900, 0.966/0.875, and 0.962/0.880, respectively. Additionally, our method substantially lowers computational complexity and inference time, thereby enabling efficient and precise segmentation of the optic disc and optic cup.
青光眼是导致全球失明的一个重要因素。准确分割视盘(OD)和视杯(OC)以获得精确的杯盘比(CDR)对于有效筛查至关重要。然而,现有的基于卷积神经网络(CNN)的分割技术往往受到高计算需求和长推理时间的限制。本文提出了一种用于OD和OC分割的高效端到端方法,利用轻量级的MobileNetv3网络作为核心特征提取模块。我们的方法将边界分支与对抗学习相结合,以实现OD和OC的多标签分割。我们在三个公开可用的数据集上验证了我们提出的方法:Drishti-GS、RIM-ONE-r3和REFUGE。结果表明,这些数据集中OD和OC分割的Dice系数分别为0.974/0.900、0.966/0.875和0.962/0.880。此外,我们的方法大大降低了计算复杂度和推理时间,从而能够对视盘和视杯进行高效且精确的分割。