Robertson N L, Brown K L
USDA, ARS, Subarctic Agricultural Research Unit, Palmer, AK.
Plant Dis. 2009 Apr;93(4):428. doi: 10.1094/PDIS-93-4-0428C.
Wild larkspur, Delphinium glaucum S. Watson, grows throughout most of Alaska along roadsides and in forests and is planted as an ornamental. Leaves containing distinct vein-clearing and chlorotic mosaic symptoms were first noticed on several D. glaucum plants during 2000 at the Georgeson Botanical Garden in Fairbanks, AK. Although affected plants continued to produce normal flowers, by 2008, the plants developed overall stunting. Initially, virus presence was determined by a general differential centrifugation extraction and concentration protocol followed by examination of the partially purified virus and leaf sap by electron microscopy. Filamentous particles approximately 725 nm long were observed. Virion protein extractions analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a putative coat protein (CP) of 35 kDa. Potyvirus identity (family Potyviridae) was confirmed with universal potyvirus antiserum in western blots and ELISA assays (Agdia, Inc., Elkhart, IN). Exotic larkspur plants, D. elatum L., growing next to diseased D. glaucum plants, did not exhibit symptoms nor were they positive for potyvirus when tested serologically as described previously. Total RNA was extracted from potyvirus-infected leaves and used in reverse transcriptase-PCR assays that specifically targeted potyviruses (2,4) to generate genomic segments for identification and sequence analysis. Fragments representing portions of the helper component protease gene, HC-Pro (700 bp), the cylindrical inclusion gene, CI (700 bp), and the 3'-end (1.7 kbp) were purified, cloned, sequenced, and deposited in GenBank (Accession Nos. FJ349329, FJ349328, and FJ349327, respectively). The sequenced 3'-end (1,674 nt) revealed a partial nuclear inclusion protein gene, NIb (1 to 630 nt), a CP gene (631 to 1,443 nt), and a 3'-untranslated region (1,447 to 1,674 nt) attached to a poly (A) tail. Blast searches in GenBank for percent identities of the nucleotide and amino acid comparisons resulted in highest similarities in conserved regions among members in the genus Potyvirus. For example, the highest CI, CP, and HP amino acid identities (0 gaps) were 67% with Potato virus A (Accession No. AF543709), 74% with Araujia mosaic virus (Accession No. EF710625), and 65% with Potato virus A (Accession No. AJ131403), respectively. However, none of the identities were sufficient for inclusion with an existing potyvirus species, whereby the CP amino acid sequence identity must be at least 80% (1). Mechanical transmission of purified virus to Chenopodium amaranticolor, C. quinoa, D. elatum, D. glaucum, and Nicotiana benthamiana seedlings was unsuccessful. We conclude that the isolated virus is a new species in the genus Potyvirus and propose the name Delphinium vein-clearing virus (DeVCV). To our knowledge, this is the first report of a virus isolated from D. glaucum and is representative of the growing number of viruses found in native plants (3). The distribution of DeVCV-infected larkspur is not known in managed or natural ecosystems. Identification of new viruses from native plants is important, in that, the host plant may act as a virus reservoir for transmission to other ornamental and crop plants. References: (1) P. H. Berger et al. Family Potyviridae. Page 819 in: Virus Taxonomy-8th Report of the ICTV. C. M. Fauquet et al., eds. Elsevier Academic Press, San Diego, CA, 2005. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) I. Cooper and A. C. Jones. Adv. Virus Res. 67:1, 2006. (4) C. Ha et al. Arch. Virol. 153:25, 2008.
野生翠雀(Delphinium glaucum S. Watson)生长于阿拉斯加大部分地区的路边及森林中,并作为观赏植物被种植。2000年,在阿拉斯加费尔班克斯的乔治森植物园里,首次在几株蓝灰翠雀植株上发现叶片出现明显的叶脉变清和褪绿花叶症状。尽管受感染植株仍能正常开花,但到2008年,植株出现了整体矮化现象。最初,通过一般的差速离心提取和浓缩方法来确定病毒的存在,随后通过电子显微镜检查部分纯化的病毒和叶汁。观察到了长度约为725 nm的丝状颗粒。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析病毒粒子蛋白提取物,发现一种推定的外壳蛋白(CP)约为35 kDa。在蛋白质免疫印迹和酶联免疫吸附测定(Agdia公司,印第安纳州埃尔克哈特)中,用通用的马铃薯Y病毒抗血清证实了马铃薯Y病毒属(马铃薯Y病毒科)的身份。生长在患病蓝灰翠雀植株旁边的外来翠雀植株(D. elatum L.)没有表现出症状,并且按照之前描述的方法进行血清学检测时,它们对马铃薯Y病毒也呈阴性。从感染马铃薯Y病毒的叶片中提取总RNA,并用于逆转录-聚合酶链反应测定,该测定专门针对马铃薯Y病毒(2,4),以生成用于鉴定和序列分析的基因组片段。代表辅助成分蛋白酶基因HC-Pro(约700 bp)、柱状内含体基因CI(约700 bp)和3'端(约1.7 kbp)部分的片段被纯化、克隆、测序,并保存在GenBank中(登录号分别为FJ349329、FJ349328和FJ349327)。测序的3'端(1674 nt)显示有一个部分核内含体蛋白基因NIb(1至630 nt)、一个CP基因(631至1443 nt)以及一个连接有多聚(A)尾的3'非翻译区(1447至1674 nt)。在GenBank中进行Blast搜索,以比较核苷酸和氨基酸的百分比同一性,结果显示在马铃薯Y病毒属成员的保守区域中相似度最高。例如,CI、CP和HP氨基酸的最高同一性(无缺口)分别为与马铃薯A病毒(登录号AF543709)的67%、与蔓陀罗花叶病毒(登录号EF710625)的74%以及与马铃薯A病毒(登录号AJ131403)的65%。然而,这些同一性都不足以归为现有的马铃薯Y病毒物种,因为CP氨基酸序列同一性必须至少为80%(1)。将纯化的病毒机械接种到苋色藜、藜、高翠雀、蓝灰翠雀和本氏烟草的幼苗上未成功。我们得出结论,分离出的病毒是马铃薯Y病毒属中的一个新物种,并提议将其命名为翠雀叶脉变清病毒(DeVCV)。据我们所知,这是首次从蓝灰翠雀中分离出病毒的报道,并且代表了在本土植物中发现的越来越多的病毒(3)。在人工管理或自然生态系统中,感染DeVCV的翠雀的分布情况尚不清楚。从本土植物中鉴定新病毒很重要,因为宿主植物可能充当病毒库,将病毒传播给其他观赏植物和作物。参考文献:(1)P. H. Berger等人。马铃薯Y病毒科。载于《病毒分类学——国际病毒分类委员会第8次报告》第819页。C. M. Fauquet等人编。爱思唯尔学术出版社,加利福尼亚州圣地亚哥,2005年。(2)J. Chen等人。《病毒学档案》146:757,2001年。(3)I. Cooper和A. C. Jones。《病毒研究进展》67:1,2006年。(4)C. Ha等人。《病毒学档案》153:25,2008年。