Jiang Chen, Choi Hyung Woo, Cheng Xiang, Ma Hanbin, Hasko David, Nathan Arokia
Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
Science. 2019 Feb 15;363(6428):719-723. doi: 10.1126/science.aav7057.
Overcoming the trade-offs among power consumption, fabrication cost, and signal amplification has been a long-standing issue for wearable electronics. We report a high-gain, fully inkjet-printed Schottky barrier organic thin-film transistor amplifier circuit. The transistor signal amplification efficiency is 38.2 siemens per ampere, which is near the theoretical thermionic limit, with an ultralow power consumption of <1 nanowatt. The use of a Schottky barrier for the source gave the transistor geometry-independent electrical characteristics and accommodated the large dimensional variation in inkjet-printed features. These transistors exhibited good reliability with negligible threshold-voltage shift. We demonstrated this capability with an ultralow-power high-gain amplifier for the detection of electrophysiological signals and showed a signal-to-noise ratio of >60 decibels and noise voltage of <0.3 microvolt per hertz at 100 hertz.
在功耗、制造成本和信号放大之间权衡取舍,一直是可穿戴电子产品面临的长期问题。我们报道了一种高增益、完全通过喷墨印刷制备的肖特基势垒有机薄膜晶体管放大器电路。该晶体管的信号放大效率为每安培38.2西门子,接近理论热电子极限,功耗超低,小于1纳瓦。在源极使用肖特基势垒赋予了晶体管与几何形状无关的电学特性,并适应了喷墨印刷特征中的大尺寸变化。这些晶体管表现出良好的可靠性,阈值电压偏移可忽略不计。我们通过用于检测电生理信号的超低功耗高增益放大器展示了这种能力,在100赫兹时信噪比大于60分贝,噪声电压小于每赫兹0.3微伏。