Suppr超能文献

预测 ICU 中的心动过速作为不稳定的替代指标。

Predicting tachycardia as a surrogate for instability in the intensive care unit.

机构信息

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Clin Monit Comput. 2019 Dec;33(6):973-985. doi: 10.1007/s10877-019-00277-0. Epub 2019 Feb 14.

Abstract

Tachycardia is a strong though non-specific marker of cardiovascular stress that proceeds hemodynamic instability. We designed a predictive model of tachycardia using multi-granular intensive care unit (ICU) data by creating a risk score and dynamic trajectory. A subset of clinical and numerical signals were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. A tachycardia episode was defined as heart rate ≥ 130/min lasting for ≥ 5 min, with ≥ 10% density. Regularized logistic regression (LR) and random forest (RF) classifiers were trained to create a risk score for upcoming tachycardia. Three different risk score models were compared for tachycardia and control (non-tachycardia) groups. Risk trajectory was generated from time windows moving away at 1 min increments from the tachycardia episode. Trajectories were computed over 3 hours leading up to the episode for three different models. From 2809 subjects, 787 tachycardia episodes and 707 control periods were identified. Patients with tachycardia had increased vasopressor support, longer ICU stay, and increased ICU mortality than controls. In model evaluation, RF was slightly superior to LR, which accuracy ranged from 0.847 to 0.782, with area under the curve from 0.921 to 0.842. Risk trajectory analysis showed average risks for tachycardia group evolved to 0.78 prior to the tachycardia episodes, while control group risks remained < 0.3. Among the three models, the internal control model demonstrated evolving trajectory approximately 75 min before tachycardia episode. Clinically relevant tachycardia episodes can be predicted from vital sign time series using machine learning algorithms.

摘要

心动过速是心血管应激的一个强烈但非特异性的标志物,会导致血流动力学不稳定。我们通过创建风险评分和动态轨迹,使用多粒度重症监护病房(ICU)数据设计了心动过速预测模型。从 Multiparameter Intelligent Monitoring in Intensive Care II 数据库中提取了一组临床和数值信号。心动过速发作定义为心率≥130/min 持续≥5 分钟,且≥10%的密度。使用正则逻辑回归(LR)和随机森林(RF)分类器对即将发生的心动过速进行训练,以创建风险评分。对三种不同的风险评分模型进行了比较,以区分心动过速和对照组(非心动过速)。从心动过速发作开始,以 1 分钟的增量从时间窗口中生成风险轨迹。为三个不同的模型计算了发作前 3 小时的轨迹。从 2809 名患者中,确定了 787 次心动过速发作和 707 次对照期。与对照组相比,心动过速患者的血管加压支持增加,ICU 住院时间延长,ICU 死亡率增加。在模型评估中,RF 略优于 LR,LR 的准确性范围为 0.847 至 0.782,曲线下面积为 0.921 至 0.842。风险轨迹分析显示,心动过速组的平均风险在心动过速发作前演变为 0.78,而对照组的风险仍<0.3。在三种模型中,内部对照模型在心动过速发作前约 75 分钟显示出演变轨迹。可以使用机器学习算法从生命体征时间序列中预测临床相关的心动过速发作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ce/6823304/b3a85b7ea831/10877_2019_277_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验