College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
College of Sciences, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
J Theor Biol. 2019 Apr 21;467:142-149. doi: 10.1016/j.jtbi.2019.02.008. Epub 2019 Feb 12.
Genomic islands that are associated with microbial adaptations and carry genomic signatures different from that of the host, and thus many methods have been proposed to select the informative genomic signatures from a range of organisms and discriminate genomic islands from the rest of the genome in terms of these signature biases. However, they are of limited use when closely related genomes are unavailable. In the present work, we proposed a kurtosis-based ranking method to select the informative genomic signatures from a single genome. In simulations with alien fragments from artificial and real genomes, the proposed kurtosis-based ranking method efficiently selected the informative genomic signatures from a single genome, without annotated information of genomes or prior knowledge from other datasets. This understanding can be useful to design more powerful method for genomic island detection.
与微生物适应相关的基因组岛携带与宿主不同的基因组特征,因此已经提出了许多方法来从一系列生物体中选择信息丰富的基因组特征,并根据这些特征偏差来区分基因组岛和基因组的其他部分。然而,当没有密切相关的基因组时,这些方法的用途就受到了限制。在本工作中,我们提出了一种基于峰度的排序方法,从单个基因组中选择信息丰富的基因组特征。在使用来自人工和真实基因组的外来片段进行的模拟中,所提出的基于峰度的排序方法能够有效地从单个基因组中选择信息丰富的基因组特征,而无需基因组的注释信息或来自其他数据集的先验知识。这种理解对于设计更强大的基因组岛检测方法可能是有用的。