Suppr超能文献

MTGIpick 可从单个基因组中稳健地识别基因组岛。

MTGIpick allows robust identification of genomic islands from a single genome.

机构信息

College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Brief Bioinform. 2018 May 1;19(3):361-373. doi: 10.1093/bib/bbw118.

Abstract

Genomic islands (GIs) that are associated with microbial adaptations and carry sequence patterns different from that of the host are sporadically distributed among closely related species. This bias can dominate the signal of interest in GI detection. However, variations still exist among the segments of the host, although no uniform standard exists regarding the best methods of discriminating GIs from the rest of the genome in terms of compositional bias. In the present work, we proposed a robust software, MTGIpick, which used regions with pattern bias showing multiscale difference levels to identify GIs from the host. MTGIpick can identify GIs from a single genome without annotated information of genomes or prior knowledge from other data sets. When real biological data were used, MTGIpick demonstrated better performance than existing methods, as well as revealed potential GIs with accurate sizes missed by existing methods because of a uniform standard. Software and supplementary are freely available at http://bioinfo.zstu.edu.cn/MTGI or https://github.com/bioinfo0706/MTGIpick.

摘要

基因组岛 (GI) 与微生物的适应有关,其携带的序列模式与宿主不同,它们在密切相关的物种中呈散在分布。这种偏差会主导 GI 检测中感兴趣的信号。然而,尽管在组成偏差方面,从基因组的其余部分区分 GI 没有统一的最佳方法标准,但宿主的各个片段之间仍然存在差异。在本工作中,我们提出了一种稳健的软件 MTGIpick,该软件使用具有多尺度差异水平的模式偏差区域来从宿主中识别 GI。MTGIpick 可以在没有基因组注释信息或来自其他数据集的先验知识的情况下,从单个基因组中识别 GI。当使用真实的生物数据时,MTGIpick 表现出优于现有方法的性能,并且由于统一的标准,揭示了现有方法因大小不准确而遗漏的潜在 GI。软件和补充材料可在 http://bioinfo.zstu.edu.cn/MTGIhttps://github.com/bioinfo0706/MTGIpick 上免费获得。

相似文献

3

引用本文的文献

1
Multimodal deep learning for predicting protein ubiquitination sites.用于预测蛋白质泛素化位点的多模态深度学习
Bioinform Adv. 2025 Aug 20;5(1):vbaf200. doi: 10.1093/bioadv/vbaf200. eCollection 2025.
4
Current state and future prospects of Horizontal Gene Transfer detection.水平基因转移检测的现状与未来展望
NAR Genom Bioinform. 2025 Feb 11;7(1):lqaf005. doi: 10.1093/nargab/lqaf005. eCollection 2025 Mar.

本文引用的文献

3
PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands.PAIDB v2.0:致病性岛和抗性岛的探索与分析
Nucleic Acids Res. 2015 Jan;43(Database issue):D624-30. doi: 10.1093/nar/gku985. Epub 2014 Oct 21.
5
IslandViewer update: Improved genomic island discovery and visualization.IslandViewer 更新:改进了基因组岛的发现和可视化。
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W129-32. doi: 10.1093/nar/gkt394. Epub 2013 May 15.
7
Towards more robust methods of alien gene detection.朝着更稳健的外源基因检测方法发展。
Nucleic Acids Res. 2011 May;39(9):e56. doi: 10.1093/nar/gkr059. Epub 2011 Feb 4.
10
Detection of genomic islands via segmental genome heterogeneity.通过基因组片段异质性检测基因组岛
Nucleic Acids Res. 2009 Sep;37(16):5255-66. doi: 10.1093/nar/gkp576. Epub 2009 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验