Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
Centre of Excellence in Materials Science (Nanomaterials), Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
Biomolecules. 2019 Jan 29;9(2):47. doi: 10.3390/biom9020047.
Silver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases. The proteomic analysis clearly demonstrates that rsAg@NCs exposure significantly alters protein expression. Most remarkable among the down-regulated proteins are those related to glycolysis, metabolism, free radical scavenging, anti-apoptosis, and mitochondrial function. In contrast, proteins involved in plasma membrane function, oxidative stress, cell death, and apoptosis were upregulated. Eventually, we also established that the apoptosis-inducing potential of rsAg@NCs is due to the activation of Ras signaling, which confirms their application in combating FCZ-resistant . infections.
基于银的纳米结构适用于许多生物医学应用,但为了成为有用的治疗剂,这些纳米材料的高毒性必须被消除。在这里,我们使用石蕊(藻类和真菌共生的一种)的代谢物生物合成无毒的超小银纳米团簇(rsAg@NCs),它们对氟康唑(FCZ)耐药的表现出优异的抗菌活性,其活性比化学合成的银纳米颗粒(AgNPs)和 FCZ 高许多倍。rsAg@NCs 通过活性氧物质的积累引发细胞凋亡,导致线粒体膜电位丧失、DNA 片段化、染色体凝聚和半胱天冬酶的激活。蛋白质组学分析清楚地表明,rsAg@NCs 的暴露显著改变了蛋白质的表达。在下调的蛋白质中,最显著的是与糖酵解、代谢、自由基清除、抗凋亡和线粒体功能相关的蛋白质。相比之下,与质膜功能、氧化应激、细胞死亡和细胞凋亡相关的蛋白质上调。最后,我们还确定 rsAg@NCs 的诱导细胞凋亡的潜力是由于 Ras 信号的激活,这证实了它们在对抗 FCZ 耐药的感染中的应用。