Suppr超能文献

地下微生物氢循环:自然存在及其对工业的影响。

Subsurface Microbial Hydrogen Cycling: Natural Occurrence and Implications for Industry.

作者信息

Gregory Simon P, Barnett Megan J, Field Lorraine P, Milodowski Antoni E

机构信息

British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK.

出版信息

Microorganisms. 2019 Feb 15;7(2):53. doi: 10.3390/microorganisms7020053.

Abstract

Hydrogen is a key energy source for subsurface microbial processes, particularly in subsurface environments with limited alternative electron donors, and environments that are not well connected to the surface. In addition to consumption of hydrogen, microbial processes such as fermentation and nitrogen fixation produce hydrogen. Hydrogen is also produced by a number of abiotic processes including radiolysis, serpentinization, graphitization, and cataclasis of silicate minerals. Both biotic and abiotically generated hydrogen may become available for consumption by microorganisms, but biotic production and consumption are usually tightly coupled. Understanding the microbiology of hydrogen cycling is relevant to subsurface engineered environments where hydrogen-cycling microorganisms are implicated in gas consumption and production and corrosion in a number of industries including carbon capture and storage, energy gas storage, and radioactive waste disposal. The same hydrogen-cycling microorganisms and processes are important in natural sites with elevated hydrogen and can provide insights into early life on Earth and life on other planets. This review draws together what is known about microbiology in natural environments with elevated hydrogen, and highlights where similar microbial populations could be of relevance to subsurface industry.

摘要

氢是地下微生物过程的关键能源,特别是在替代电子供体有限的地下环境以及与地表联系不畅的环境中。除了消耗氢之外,发酵和固氮等微生物过程也会产生氢。氢还通过多种非生物过程产生,包括辐射分解、蛇纹石化、石墨化以及硅酸盐矿物的碎裂。生物产生的氢和非生物产生的氢都可能被微生物利用,但生物产生和消耗通常紧密耦合。了解氢循环的微生物学与地下工程环境相关,在碳捕获与封存、能源气体储存和放射性废物处置等多个行业中,涉及氢循环的微生物与气体消耗、生产及腐蚀有关。同样的氢循环微生物和过程在氢含量较高的自然场所也很重要,能够为了解地球早期生命和其他行星上的生命提供线索。本综述汇集了关于氢含量较高的自然环境中微生物学的已知信息,并强调了类似微生物种群在地下工业中可能具有相关性的领域。

相似文献

1
Subsurface Microbial Hydrogen Cycling: Natural Occurrence and Implications for Industry.
Microorganisms. 2019 Feb 15;7(2):53. doi: 10.3390/microorganisms7020053.
2
4
Earth-like Habitable Environments in the Subsurface of Mars.
Astrobiology. 2021 Jun;21(6):741-756. doi: 10.1089/ast.2020.2386. Epub 2021 Apr 15.
5
Biogeochemistry of dihydrogen (H2).
Met Ions Biol Syst. 2005;43:9-48. doi: 10.1201/9780824751999.ch2.
6
The origin, source, and cycling of methane in deep crystalline rock biosphere.
Front Microbiol. 2015 Jul 17;6:725. doi: 10.3389/fmicb.2015.00725. eCollection 2015.
7
Radiolytic hydrogen and microbial respiration in subsurface sediments.
Astrobiology. 2007 Dec;7(6):951-70. doi: 10.1089/ast.2007.0150.
8
Microbial iron-redox cycling in subsurface environments.
Biochem Soc Trans. 2012 Dec 1;40(6):1249-56. doi: 10.1042/BST20120202.
9
Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field.
Philos Trans A Math Phys Eng Sci. 2020 Feb 21;378(2165):20180429. doi: 10.1098/rsta.2018.0429. Epub 2020 Jan 6.
10
Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.
Adv Biochem Eng Biotechnol. 2014;142:95-121. doi: 10.1007/10_2013_257.

引用本文的文献

1
Experimental procedures for studying microbial reactions under high hydrogen gas saturations in microcosms.
MethodsX. 2025 May 10;14:103344. doi: 10.1016/j.mex.2025.103344. eCollection 2025 Jun.
2
Identifying Potential Geochemical and Microbial Impacts of Hydrogen Storage in a Deep Saline Aquifer.
Environ Microbiol Rep. 2025 Apr;17(2):e70076. doi: 10.1111/1758-2229.70076.
3
A Critical Review on Parameters Affecting the Feasibility of Underground Hydrogen Storage.
ACS Omega. 2025 Mar 21;10(12):11658-11696. doi: 10.1021/acsomega.4c10442. eCollection 2025 Apr 1.
4
Exploring Microbiological Dynamics in a Salt Cavern for Potential Hydrogen Storage Use.
Environ Microbiol Rep. 2025 Apr;17(2):e70064. doi: 10.1111/1758-2229.70064.
5
Review on natural hydrogen wells safety.
Nat Commun. 2025 Jan 3;16(1):369. doi: 10.1038/s41467-024-55773-y.
6
Model predictions of global geologic hydrogen resources.
Sci Adv. 2024 Dec 13;10(50):eado0955. doi: 10.1126/sciadv.ado0955.
7
Thoron, radon and microbial community as supportive indicators of seismic activity in groundwater.
Sci Rep. 2024 Oct 29;14(1):25955. doi: 10.1038/s41598-024-77011-7.
8
Microbiome associated to an H-emitting zone in the São Francisco basin Brazil.
Environ Microbiome. 2024 Oct 26;19(1):80. doi: 10.1186/s40793-024-00627-9.
9
Artificial subsurface lithoautotrophic microbial ecosystems and gas storage in deep subsurface.
FEMS Microbiol Ecol. 2024 Oct 25;100(11). doi: 10.1093/femsec/fiae142.
10
Anthropogenic impacts on the terrestrial subsurface biosphere.
Nat Rev Microbiol. 2025 Mar;23(3):147-161. doi: 10.1038/s41579-024-01110-5. Epub 2024 Oct 15.

本文引用的文献

2
The deep continental subsurface: the dark biosphere.
Int Microbiol. 2018 Jun;21(1-2):3-14. doi: 10.1007/s10123-018-0009-y. Epub 2018 May 30.
3
Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere.
Environ Microbiol Rep. 2019 Apr;11(2):165-172. doi: 10.1111/1758-2229.12723. Epub 2018 Dec 26.
4
Viable cyanobacteria in the deep continental subsurface.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10702-10707. doi: 10.1073/pnas.1808176115. Epub 2018 Oct 1.
5
Biological methane production under putative Enceladus-like conditions.
Nat Commun. 2018 Feb 27;9(1):748. doi: 10.1038/s41467-018-02876-y.
6
Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community.
ISME J. 2017 Oct;11(10):2319-2333. doi: 10.1038/ismej.2017.94. Epub 2017 Jun 23.
7
Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes.
Science. 2017 Apr 14;356(6334):155-159. doi: 10.1126/science.aai8703.
10
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Nat Commun. 2016 Oct 14;7:12770. doi: 10.1038/ncomms12770.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验