From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304.
J Biol Chem. 2019 Apr 12;294(15):5993-6006. doi: 10.1074/jbc.RA118.006004. Epub 2019 Feb 15.
Genome replication and virion assembly of segmented RNA viruses are highly coordinated events, tightly regulated by sequence and structural elements in the UTRs of viral RNA. This process is poorly defined and likely requires the participation of host proteins in concert with viral proteins. In this study, we employed a proteomics-based approach, named RNA-protein interaction detection (RaPID), to comprehensively screen for host proteins that bind to a conserved motif within the rotavirus (RV) 3' terminus. Using this assay, we identified ATP5B, a core subunit of the mitochondrial ATP synthase, as having high affinity to the RV 3'UTR consensus sequences. During RV infection, ATP5B bound to the RV 3'UTR and co-localized with viral RNA and viroplasm. Functionally, siRNA-mediated genetic depletion of ATP5B or other ATP synthase subunits such as ATP5A1 and ATP5O reduced the production of infectious viral progeny without significant alteration of intracellular viral RNA levels or RNA translation. Chemical inhibition of ATP synthase diminished RV yield in both conventional cell culture and in human intestinal enteroids, indicating that ATP5B positively regulates late-stage RV maturation in primary intestinal epithelial cells. Collectively, our results shed light on the role of host proteins in RV genome assembly and particle formation and identify ATP5B as a novel pro-RV RNA-binding protein, contributing to our understanding of how host ATP synthases may galvanize virus growth and pathogenesis.
基因组复制和病毒粒子组装是高度协调的事件,受病毒 RNA 的 UTR 中的序列和结构元件的严格调控。这个过程还没有完全定义,可能需要宿主蛋白与病毒蛋白共同参与。在这项研究中,我们采用了一种基于蛋白质组学的方法,称为 RNA-蛋白相互作用检测(RaPID),来全面筛选与轮状病毒(RV)3'末端保守基序结合的宿主蛋白。使用这种测定法,我们鉴定了 ATP5B,即线粒体 ATP 合酶的核心亚基,它与 RV 3'UTR 共有序列具有高亲和力。在 RV 感染过程中,ATP5B 与 RV 3'UTR 结合,并与病毒 RNA 和病毒质共定位。功能上,siRNA 介导的 ATP5B 或其他 ATP 合酶亚基(如 ATP5A1 和 ATP5O)的遗传耗竭减少了感染性病毒后代的产生,而细胞内病毒 RNA 水平或 RNA 翻译没有明显改变。ATP 合酶的化学抑制作用降低了传统细胞培养和人肠类器官中的 RV 产量,表明 ATP5B 正向调节原发性肠上皮细胞中 RV 晚期成熟。总之,我们的结果阐明了宿主蛋白在 RV 基因组组装和颗粒形成中的作用,并鉴定出 ATP5B 是一种新型的促 RV RNA 结合蛋白,有助于我们理解宿主 ATP 合酶如何促进病毒生长和发病机制。