Suppr超能文献

成人结构连接组的层次复杂性。

Hierarchical complexity of the adult human structural connectome.

机构信息

Usher Institute for Population Health Science and Informatics, Medical School, University of Edinburgh, Edinburgh, EH16 4UX, UK.

Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.

出版信息

Neuroimage. 2019 May 1;191:205-215. doi: 10.1016/j.neuroimage.2019.02.028. Epub 2019 Feb 14.

Abstract

The structural network of the human brain has a rich topology which many have sought to characterise using standard network science measures and concepts. However, this characterisation remains incomplete and the non-obvious features of this topology have largely confounded attempts towards comprehensive constructive modelling. This calls for new perspectives. Hierarchical complexity is an emerging paradigm of complex network topology based on the observation that complex systems are composed of hierarchies within which the roles of hierarchically equivalent nodes display highly variable connectivity patterns. Here we test the hierarchical complexity of the human structural connectomes of a group of seventy-nine healthy adults. Binary connectomes are found to be more hierarchically complex than three benchmark random network models. This provides a new key description of brain structure, revealing a rich diversity of connectivity patterns within hierarchically equivalent nodes. Dividing the connectomes into four tiers based on degree magnitudes indicates that the most complex nodes are neither those with the highest nor lowest degrees but are instead found in the middle tiers. Spatial mapping of the brain regions in each hierarchical tier reveals consistency with the current anatomical, functional and neuropsychological knowledge of the human brain. The most complex tier (Tier 3) involves regions believed to bridge high-order cognitive (Tier 1) and low-order sensorimotor processing (Tier 2). We then show that such diversity of connectivity patterns aligns with the diversity of functional roles played out across the brain, demonstrating that hierarchical complexity can characterise functional diversity strictly from the network topology.

摘要

人类大脑的结构网络具有丰富的拓扑结构,许多人试图用标准的网络科学度量和概念来描述它。然而,这种描述仍然不完整,并且这种拓扑结构的不明显特征在很大程度上阻碍了全面的建设性建模尝试。这需要新的视角。层次复杂性是一种新兴的复杂网络拓扑结构范式,其基础是观察到复杂系统是由层次结构组成的,在这些层次结构中,层次等效节点的作用表现出高度可变的连接模式。在这里,我们测试了一组 79 名健康成年人的人类结构连接组的层次复杂性。二值连接组比三个基准随机网络模型更具有层次复杂性。这为大脑结构提供了一个新的关键描述,揭示了层次等效节点内丰富多样的连接模式。根据度大小将连接组分为四层表明,最复杂的节点既不是具有最高度也不是最低度的节点,而是位于中间层。对每个层次的大脑区域进行空间映射,揭示了与当前人类大脑的解剖学、功能和神经心理学知识的一致性。最复杂的层次(第 3 层)涉及被认为连接高阶认知(第 1 层)和低阶感觉运动处理(第 2 层)的区域。然后我们表明,这种连接模式的多样性与大脑中发挥的功能角色的多样性相匹配,证明了层次复杂性可以严格从网络拓扑结构来描述功能多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7380/6503942/cfa36d7824a6/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验