Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, Germany; Experimental Pediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital Tübingen, Germany.
Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, United Kingdom; Great Ormond Street Hospital NHS Trust, London, United Kingdom.
J Neurosci Methods. 2019 Apr 15;318:56-68. doi: 10.1016/j.jneumeth.2019.02.008. Epub 2019 Feb 16.
This manuscript describes a new, multidimensional and data-driven approach to identify outlying datapoints from a first-level fMRI dataset.
Using three different indicators of data corruption (the fast variance component of DVARS [Δ%D-var], scan-to-scan total displacement [STS], and each scan's overall explained variance [R]), it identifies outlying datapoints while being balanced using Akaike'c corrected criterion (AIC ) to avoid overcorrection. We then explore the impact of censoring, interpolating, or both, to remove a bad scan's contribution to the final timeseries.
Our results (using three real-life datasets and extensive simulations) show that motion-corrupted datapoints as well as non-motion related image artefacts are detected reliably. Using several indicators is shown to be an advantage over existing single-indicator solutions in different settings. As a result of using our algorithm, stronger activation (as detected by both T-value and number of activated voxels) and an increase in the temporal signal-to-noise ratio can be seen. The effects of censoring and interpolation are distinct and complex.
The multidimensional approach described here is able to identify outlying datapoints in fMRI timeseries, with demonstrable positive effects on several outcome measures. While censoring datapoints may be preferable in many settings, the ultimate choice on which approach to choose may depend on the data at hand. Recommendations are provided for different scenarios.
本文描述了一种新的、多维且数据驱动的方法,用于从第一级 fMRI 数据集识别异常数据点。
使用三个不同的数据损坏指标(DVARS 的快速方差分量[Δ%D-var]、扫描间总位移[STS]和每个扫描的总解释方差[R]),它在使用 Akaike 校正标准(AIC)进行平衡的同时识别异常数据点,以避免过度校正。然后,我们探索了剔除、插值或两者兼有的影响,以去除不良扫描对最终时间序列的贡献。
我们的结果(使用三个真实数据集和广泛的模拟)表明,可以可靠地检测到运动相关的数据点以及与运动无关的图像伪影。使用多个指标比在不同设置下使用现有的单指标解决方案具有优势。由于使用了我们的算法,可以看到更强的激活(由 T 值和激活体素的数量检测到)和时间信号噪声比的增加。剔除和插值的影响是明显和复杂的。
本文描述的多维方法能够识别 fMRI 时间序列中的异常数据点,对多个结果指标有明显的积极影响。虽然在许多情况下剔除数据点可能更可取,但最终选择哪种方法可能取决于手头的数据。针对不同情况提供了建议。