Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, CA, United States of America. Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California - Los Angeles, Los Angeles, CA, United States of America.
Biofabrication. 2019 Mar 28;11(2):025014. doi: 10.1088/1758-5090/ab08b5.
Physicochemical and biological gradients are desirable features for hydrogels to enhance their relevance to biological environments for three-dimensional (3D) cell culture. Therefore, simple and efficient techniques to generate chemical, physical and biological gradients within hydrogels are highly desirable. This work demonstrates a technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels by stacking and crosslinking prehydrogel solution in a layer by layer manner. Partial crosslinking of the hydrogel allows mixing of prehydrogel solution with the previous hydrogel layer, which makes a smooth gradient profile, rather than discrete layers. This technique enables the generation of concentration gradients of bovine serum albumin in both gelatin methacryloyl (GelMA) and poly(ethylene glycol) diacrylate hydrogels, as well as mechanical gradients across a hydrogel containing varying gel concentrations. Fluorescence microscopy, mechanical testing, and scanning electron microscopy show that the gradient profiles can be controlled by changing both the volume and concentration of each layer as well as intensity of UV exposure. GelMA hydrogel gradients with different Young's moduli were successfully used to culture human fibroblasts. The fibroblasts migrated along the gradient axis and showed different morphologies. In general, the proposed technique provides a rapid and simple approach to design and fabricate 3D hydrogel gradients for in vitro biological studies and potentially for in vivo tissue engineering applications.
物理化学和生物学梯度是水凝胶的理想特征,可以增强其与三维(3D)细胞培养的生物环境的相关性。因此,在水凝胶中产生化学、物理和生物学梯度的简单而有效的技术是非常需要的。本工作展示了一种通过层层堆叠和光交联预水凝胶溶液来在光交联水凝胶中产生生物分子和机械梯度的技术。水凝胶的部分交联允许预水凝胶溶液与前一层水凝胶混合,从而形成平滑的梯度轮廓,而不是离散的层。这种技术能够在明胶甲基丙烯酰(GelMA)和聚(乙二醇)二丙烯酸酯水凝胶中产生牛血清白蛋白的浓度梯度,以及在含有不同凝胶浓度的水凝胶中产生机械梯度。荧光显微镜、力学测试和扫描电子显微镜表明,梯度轮廓可以通过改变每层的体积和浓度以及紫外光照射的强度来控制。具有不同杨氏模量的 GelMA 水凝胶梯度成功地用于培养人成纤维细胞。成纤维细胞沿着梯度轴迁移,并表现出不同的形态。总的来说,所提出的技术为设计和制造用于体外生物学研究和潜在的体内组织工程应用的 3D 水凝胶梯度提供了一种快速而简单的方法。