Kim Ji Hyeon, Sim Jiyeon, Kim Hyun-Jung
Laboratory of Molecular Pharmacology and Stem Cells, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
Biomol Ther (Seoul). 2018 Jul 1;26(4):380-388. doi: 10.4062/biomolther.2018.001.
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
神经干细胞(NSCs)具有自我更新能力,并能分化为多种神经系统细胞类型。在胚胎发育过程中,可溶性生物分子的浓度在控制细胞增殖、迁移、分化和凋亡方面起着关键作用。为了找到生成所需细胞类型的最佳培养条件,我们使用了微流控芯片生成的生长因子梯度系统。在当前研究中,微流控装置中的神经干细胞在整个细胞培养期间保持健康,并响应生长因子(表皮生长因子和碱性成纤维细胞生长因子)的浓度梯度进行增殖和分化。我们还表明,神经干细胞中ASCL1的过表达根据微流控梯度芯片中生成的生长因子浓度梯度增加了神经元分化。微流控系统使我们能够在单个装置内研究生长因子的浓度依赖性效应,而传统系统则需要使用固定生长因子浓度进行多个独立培养。我们的研究表明,微流控梯度生成芯片是确定最佳培养条件的有力工具。