Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA.
Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA.
BMC Genomics. 2019 Feb 20;20(1):149. doi: 10.1186/s12864-019-5524-5.
Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean (Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis.
Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42-1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042. Overexpressing and silencing GmNAC42-1 in elicited soybean hairy roots dramatically enhanced and suppressed the amounts of glyceollin metabolites and biosynthesis gene mRNAs, respectively. Yet, overexpressing GmNAC42-1 in non-elicited hairy roots failed to stimulate the expressions of all biosynthesis genes. Thus, GmNAC42-1 was necessary but not sufficient to activate all biosynthesis genes on its own, suggesting an important role in the glyceollin gene regulatory network (GRN). The GmNAC42-1 protein directly bound the promoters of biosynthesis genes IFS2 and G4DT in the yeast one-hybrid (Y1H) system.
Acidity stress is a novel elicitor and dehydration is a suppressor of glyceollin biosynthesis. The TF gene GmNAC42-1 is an essential positive regulator of glyceollin biosynthesis. Overexpressing GmNAC42-1 in hairy roots can be used to increase glyceollin yields > 10-fold upon elicitation. Thus, manipulating the expressions of glyceollin TFs is an effective strategy for enhancing the bioproduction of glyceollins in soybean.
大豆中的大豆苷元是异黄酮衍生的病原菌诱导防御代谢物(植物抗毒素),在抵御病原菌方面具有重要作用。它们在哺乳动物中也具有令人印象深刻的抗癌和神经保护活性。尽管它们作为治疗剂具有潜在的用途,但合成大豆苷元并不经济,并且仅在响应特定应激时短暂且以低量生物合成。调节大豆苷元生物合成的工程可能是提高其生物生产的有前途的方法,然而,调节其生物合成的转录因子(TF)仍然难以捉摸。为了解决这个问题,我们首先旨在确定增强或抑制大豆苷元诱导的新型非生物胁迫,然后使用比较转录组学方法搜索可能正向调节大豆苷元生物合成的 TF 基因候选物。
酸度胁迫(pH 3.0 培养基)和脱水分别对大豆苷元生物合成施加了延长(长达一周)的诱导或抑制作用。RNA-seq 发现,所有已知的生物合成基因均受酸度胁迫和脱水的相反调节,但已知的异黄酮 TF 不受调节。系统获得性抗性(SAR)基因在基因集中高度富集。我们选择功能表征被注释为 SAR 基因和拟南芥(Arabidopsis)吲哚生物碱植物抗毒素调节剂 ANAC042 的同源物的 NAC(NAM/ATAF1/2/CUC2)家族 TF GmNAC42-1。在诱导的大豆毛状根中过表达和沉默 GmNAC42-1 分别显著增加和抑制大豆苷元代谢物和生物合成基因 mRNA 的量。然而,在非诱导的毛状根中过表达 GmNAC42-1 未能刺激所有生物合成基因的表达。因此,GmNAC42-1 本身是激活所有生物合成基因所必需的,但不是充分的,这表明它在大豆苷元基因调控网络(GRN)中起着重要作用。GmNAC42-1 蛋白在酵母单杂交(Y1H)系统中直接结合生物合成基因 IFS2 和 G4DT 的启动子。
酸度胁迫是大豆苷元生物合成的新型诱导剂,而脱水是其抑制剂。TF 基因 GmNAC42-1 是大豆苷元生物合成的必需正调控因子。在毛状根中过表达 GmNAC42-1 可在诱导时将大豆苷元的产量提高 10 倍以上。因此,操纵大豆苷元 TF 的表达是提高大豆中大豆苷元生物生产的有效策略。