Qiu Jiantai Timothy, Samanta Subhranu, Dutta Mrinmoy, Ginnaram Sreekanth, Maikap Siddheswar
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital (CGMH) , Linkou, Tao-Yuan 33302 , Taiwan.
Langmuir. 2019 Mar 19;35(11):3897-3906. doi: 10.1021/acs.langmuir.8b04090. Epub 2019 Mar 11.
Controlled resistive switching by using an optimized 2 nm thick MoS interfacial layer and the role of top electrodes (TEs) on ascorbic acid (AA) sensing in a TaO -based resistive random access memory (RRAM) platform have been investigated for the first time. Both the high-resolution transmission electron microscopy (HRTEM) image and depth profile from energy dispersive X-ray spectroscopy confirm the presence of each layer in IrO /AlO/TaO /MoS/TiN structure. The pristine device including the IrO TE with the 2 nm thick interfacial layer shows the highest uniform rectifying direct current endurance >1000 cycles and a large rectifying ratio >3.2 × 10, and a high nonlinearity factor >700 is obtained, greater than that of Pt and Ru TEs. After formation, this IrO device produces bipolar resistive switching characteristics and a long program/erase (P/E) endurance >10 cycles at a low operation current of <50 μA with small pulse width of 100 ns. The stressed device shows a reduced AlO/TaO interface from the HRTEM image, which is owing to O ions' migration toward TiN electrode. By adjusting the RESET voltage and current level, consecutive >100 complementary resistive switching as well as long P/E endurance of >10 cycles are obtained. Schottky barrier height modulation at a low field is observed owing to reduction-oxidation of the TE, which is evidenced through reversible AA detection. At a higher field, Fowler-Nordheim tunneling and hopping conduction are observed. Ascorbic acid detection with a low concentration of 1 pM by using a porous IrO /AlO/TaO /MoS/TiN RRAM device directly is an additional novelty of this work, which will be useful in future for early diagnosis of scurvy.
首次研究了在基于TaO的电阻式随机存取存储器(RRAM)平台中,使用优化的2nm厚MoS界面层的可控电阻开关以及顶电极(TEs)在抗坏血酸(AA)传感中的作用。高分辨率透射电子显微镜(HRTEM)图像和能量色散X射线光谱的深度剖析均证实了IrO/AlO/TaO/MoS/TiN结构中各层的存在。包括具有2nm厚界面层的IrO TE的原始器件显示出最高的均匀整流直流耐久性>1000次循环、大的整流比>3.2×10,并且获得了大于700的高非线性因子,大于Pt和Ru TEs。形成后,该IrO器件产生双极电阻开关特性,并且在<50μA的低操作电流和100ns的小脉冲宽度下具有长的编程/擦除(P/E)耐久性>10次循环。从HRTEM图像可以看出,受应力的器件显示出AlO/TaO界面减少,这是由于O离子向TiN电极迁移所致。通过调整复位电压和电流水平,获得了连续>100次的互补电阻开关以及>10次循环的长P/E耐久性。由于TE的还原-氧化,在低场观察到肖特基势垒高度调制,这通过可逆的AA检测得到证实。在较高场,观察到福勒-诺德海姆隧穿和跳跃传导。使用多孔IrO/AlO/TaO/MoS/TiN RRAM器件直接检测低浓度为1pM的抗坏血酸是这项工作的另一个新颖之处,这在未来对于坏血病的早期诊断将是有用的。