Energy, Environment and Water Research Center, The Cyprus Institute, 2121, Aglantzia, Nicosia, Cyprus.
Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece.
Sci Rep. 2019 Feb 21;9(1):2469. doi: 10.1038/s41598-019-38994-w.
Sand flies are responsible for the transmission of leishmaniasis, a neglected tropical disease claiming more than 50,000 lives annually. Leishmaniasis is an emerging health risk in tropical and Mediterranean countries as well as temperate regions in North America and Europe. There is an increasing demand for predicting population dynamics and spreading of sand flies to support management and control, yet phenotypic diversity and complex environmental dependence hamper model development. Here, we present the principles for developing predictive species-specific population dynamics models for important disease vectors. Based on these principles, we developed a sand fly population dynamics model with a generic structure where model parameters are inferred using a surveillance dataset collected from Greece and Cyprus. The model incorporates distinct life stages and explicit dependence on a carefully selected set of environmental variables. The model successfully replicates the observations and demonstrates high predictive capacity on the validation dataset from Turkey. The surveillance datasets inform about biological processes, even in the absence of laboratory experiments. Our findings suggest that the methodology can be applied to other vector species to predict abundance, control dispersion, and help to manage the global burden of vector-borne diseases.
沙蝇是利什曼病的传播媒介,这种被忽视的热带病每年导致超过 5 万人死亡。利什曼病是热带和地中海国家以及北美和欧洲温带地区出现的一个新的健康风险。人们越来越需要预测沙蝇的种群动态和传播,以支持管理和控制,但表型多样性和复杂的环境依赖性阻碍了模型的开发。在这里,我们提出了为重要疾病媒介开发预测特定物种的种群动态模型的原则。基于这些原则,我们开发了一个沙蝇种群动态模型,具有通用的结构,其中模型参数是使用从希腊和塞浦路斯收集的监测数据集推断出来的。该模型包含不同的生命阶段,并明确依赖于一组经过精心挑选的环境变量。该模型成功地复制了观察结果,并在来自土耳其的验证数据集上表现出了很高的预测能力。监测数据集提供了有关生物过程的信息,即使在没有实验室实验的情况下也是如此。我们的研究结果表明,该方法可以应用于其他媒介物种,以预测丰度、控制分散,并帮助管理全球媒介传播疾病的负担。