The Cyprus Institute, Climate and Atmosphere Research Centre (CARE-C), 20 Konstantinou Kavafi Street, 2121, Aglantzia, Nicosia, Cyprus.
Department of Medical Sciences, University of Oxford, Oxford, UK.
Sci Rep. 2022 Jul 8;12(1):11587. doi: 10.1038/s41598-022-15806-2.
Various environmental drivers influence life processes of insect vectors that transmit human disease. Life histories observed under experimental conditions can reveal such complex links; however, designing informative experiments for insects is challenging. Furthermore, inferences obtained under controlled conditions often extrapolate poorly to field conditions. Here, we introduce a pseudo-stage-structured population dynamics model to describe insect development as a renewal process with variable rates. The model permits representing realistic life stage durations under constant and variable environmental conditions. Using the model, we demonstrate how random environmental variations result in fluctuating development rates and affect stage duration. We apply the model to infer environmental dependencies from the life history observations of two common disease vectors, the southern (Culex quinquefasciatus) and northern (Culex pipiens) house mosquito. We identify photoperiod, in addition to temperature, as pivotal in regulating larva stage duration, and find that carefully timed life history observations under semi-field conditions accurately predict insect development throughout the year. The approach we describe augments existing methods of life table design and analysis, and contributes to the development of large-scale climate- and environment-driven population dynamics models for important disease vectors.
各种环境驱动因素影响传播人类疾病的昆虫媒介的生命过程。在实验条件下观察到的生活史可以揭示出如此复杂的联系;然而,为昆虫设计有信息量的实验具有挑战性。此外,在受控条件下获得的推论通常很难外推到野外条件。在这里,我们引入了一个伪阶段结构的种群动态模型,以描述具有可变速率的昆虫发育作为更新过程。该模型允许在恒定和可变环境条件下表示现实的生命阶段持续时间。使用该模型,我们展示了随机环境变化如何导致发育率波动,并影响阶段持续时间。我们将该模型应用于从两种常见疾病载体(南方(Culex quinquefasciatus)和北方(Culex pipiens)家蚊)的生活史观察中推断环境依赖性。我们发现,除了温度之外,光周期也是调节幼虫阶段持续时间的关键因素,并且发现,在半野外条件下精心定时的生活史观察可以准确预测昆虫在整个一年的发育情况。我们所描述的方法增强了生命表设计和分析的现有方法,并有助于为重要疾病载体的大规模气候和环境驱动的种群动态模型的开发做出贡献。