Group Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
Eur J Neurosci. 2020 Jan;51(1):482-493. doi: 10.1111/ejn.14388. Epub 2019 May 2.
In mammals, the central pacemaker that coordinates 24-hr rhythms is located in the suprachiasmatic nucleus (SCN). Individual neurons of the SCN have a molecular basis for rhythm generation and hence, they function as cell autonomous oscillators. Communication and synchronization among these neurons are crucial for obtaining a coherent rhythm at the population level, that can serve as a pace making signal for brain and body. Hence, the ability of single SCN neurons to produce circadian rhythms is equally important as the ability of these neurons to synchronize one another, to obtain a bona fide pacemaker at the SCN tissue level. In this chapter we will discuss the mechanisms underlying synchronization, and plasticity herein, which allows adaptation to changes in day length. Furthermore, we will discuss deterioration in synchronization among SCN neurons in aging, and gain in synchronization by voluntary physical activity or exercise.
在哺乳动物中,协调 24 小时节律的中枢起搏器位于视交叉上核(SCN)。SCN 的单个神经元具有产生节律的分子基础,因此它们作为自主振荡器发挥作用。这些神经元之间的通讯和同步对于在群体水平上获得一致的节律至关重要,该节律可以作为大脑和身体的起搏信号。因此,单个 SCN 神经元产生昼夜节律的能力与这些神经元彼此同步的能力同样重要,以在 SCN 组织水平上获得真正的起搏器。在本章中,我们将讨论同步的机制,以及在此基础上的可塑性,这使得能够适应日长的变化。此外,我们还将讨论衰老过程中 SCN 神经元之间同步性的恶化,以及通过自愿的体育活动或锻炼获得的同步性增强。