Suppr超能文献

利用计算机技术鉴定能够降解硫丹和硫丹硫酸盐的酶。

Identification of enzyme(s) capable of degrading endosulfan and endosulfan sulfate using in silico techniques.

机构信息

Environmental Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.

Environmental Toxicology and Soil Microbial Ecology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.

出版信息

Enzyme Microb Technol. 2019 May;124:32-40. doi: 10.1016/j.enzmictec.2019.01.003. Epub 2019 Jan 4.

Abstract

Endosulfan is one of the most widely used organochlorine cyclodiene insecticides. Microbial oxidation of endosulfan forms endosulfan sulfate, which is more or less toxic and persistent as endosulfan. Due to lack of specificity and efficiency of microbial bioremediation technique in the field conditions, enzymatic bioremediation is receiving huge attention to clean-up the environment. In the present study, X-ray crystal structures of enzymes from Brookhaven Protein Data Bank were screened for their potential to degrade endosulfan and endosulfan sulfate using molecular docking and molecular dynamics simulation techniques. A phenol hydroxylase, 1PN0 from Trichosporon cutaneum was found to have the potential to degrade both α-endosulfan and endosulfan sulfate while a bacterial CotA laccase, 3ZDW from Bacillus subtilis has the potential to degrade α-endosulfan. The in silico result correlate with in vitro degradation study using two different strains of Trichosporon cutaneum. In vitro degradation study found that the fungal strain was capable of degrading 60.36% α-endosulfan, 70.73% β-endosulfan, and 52.08% endosulfan sulfate. The presence of phenol hydroxylase inhibitor in the sulfur-free medium with endosulfan and endosulfan sulfate as sole sulfur source inhibits the growth of both the fungal strains. Such in silico techniques can provide an easy and reliable way to speed up the development of bioremediation processes through rapid identification of potential enzymes and microbes to counter the ever-increasing number of toxic compounds in the environment.

摘要

硫丹是最广泛使用的有机氯环二烯杀虫剂之一。微生物氧化硫丹会形成硫丹硫酸酯,其毒性和持久性与硫丹相当。由于在野外条件下微生物生物修复技术缺乏特异性和效率,酶生物修复技术受到了广泛关注,以清理环境。在本研究中,使用分子对接和分子动力学模拟技术,从布鲁克海文蛋白质数据库筛选了 X 射线晶体结构的酶,以研究其降解硫丹和硫丹硫酸酯的潜力。发现一种来自毛孢子菌的苯酚羟化酶 1PN0 具有降解α-硫丹和硫丹硫酸酯的潜力,而一种来自枯草芽孢杆菌的 CotA 漆酶 3ZDW 具有降解α-硫丹的潜力。计算机模拟结果与使用两种不同的毛孢子菌的体外降解研究相吻合。体外降解研究发现,真菌菌株能够降解 60.36%的α-硫丹、70.73%的β-硫丹和 52.08%的硫丹硫酸酯。在无硫培养基中添加酚羟化酶抑制剂,以硫丹和硫丹硫酸酯作为唯一的硫源,会抑制两种真菌菌株的生长。这种计算机模拟技术可以为生物修复过程的快速发展提供一种简单可靠的方法,通过快速识别潜在的酶和微生物来应对环境中不断增加的有毒化合物的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验